Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lung Cancer ; 160: 99-110, 2021 10.
Article in English | MEDLINE | ID: mdl-34482104

ABSTRACT

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Subject(s)
Fanconi Anemia , Lung Neoplasms , Mesothelioma, Malignant , Animals , Cisplatin , Humans , Lung Neoplasms/drug therapy , Mice , Pemetrexed
2.
Food Chem ; 352: 129306, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33677213

ABSTRACT

Numerous human conditions can benefit from diets rich in proteins and bioactives, such as capsaicin (CAP), yet their effective delivery is a sensorial, scientific and technological challenge. This study hypothesized that CAP can form various complexes with native bovine alpha-lactalbumin (holo-ALA) and decalcified-ALA (apo-ALA). Calorimetric and spectroscopic techniques reveals ALA-CAP molecular complexation is spontaneous, exothermic and accompanied by various conformational changes. ITC shows the interaction stoichiometry (n) and binding constant (Kb) for holo-ALA to be 0.87 ± 0.03, 1.54 ± 0.23 × 105 M-1 and for apo-ALA to be 0.64 ± 0.09, 9.41 ± 2.16 × 104 M-1. Molecular docking further elucidates that hydrogen bonds govern CAP binding to holo-ALA while hydrophobic interactions dominate binding to apo-ALA in a structural cleft. Finally, this work shows these interactions along with controlled aggregation can be utilized to form CAP-loaded colloids with encapsulation efficiency of 47.1 ± 1.0%. Thus, this study shows great promise in the prospective use of ALA as an edible delivery vehicle for CAP.


Subject(s)
Capsaicin/chemistry , Capsaicin/metabolism , Chemical Phenomena , Lactalbumin/chemistry , Lactalbumin/metabolism , Animals , Cattle , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...