Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 232-246, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488730

ABSTRACT

Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.


Subject(s)
Membrane Proteins , Specimen Handling , Cryoelectron Microscopy/methods , Reproducibility of Results , Specimen Handling/methods , Image Processing, Computer-Assisted
2.
Cell Rep ; 38(2): 110213, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021082

ABSTRACT

Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.


Subject(s)
Adipocytes/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Mitochondria/metabolism , Adipose Tissue/metabolism , Animals , Calcium/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Energy Metabolism/physiology , GTP-Binding Protein gamma Subunits/deficiency , GTP-Binding Protein gamma Subunits/physiology , Humans , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Lipids/physiology , Male , Mice , Mice, Inbred C57BL
3.
Eur J Cell Biol ; 100(7-8): 151180, 2021.
Article in English | MEDLINE | ID: mdl-34653930

ABSTRACT

The endoplasmic reticulum (ER) is a large, single-copy, membrane-bound organelle that comprises an elaborate 3D network of diverse structural subdomains, including highly curved tubules, flat sheets, and parts that form contacts with nearly every other organelle. The dynamic and complex organization of the ER poses a major challenge on understanding how its functioning - maintenance of the structure, distribution of its functions and communication with other organelles - is orchestrated. In this study, we resolved a unique localization profile within the ER network for several resident ER proteins representing a broad range of functions associated with the ER using immuno-electron microscopy and calculation of a relative labeling index (RLI). Our results demonstrated the effect of changing cellular environment on protein localization and highlighted the importance of correct protein expression level when analyzing its localization at subdomain resolution. We present new software tools for anonymization of images for blind analysis and for quantitative assessment of membrane contact sites (MCSs) from thin section transmission electron microscopy micrographs. The analysis of ER-mitochondria contacts suggested the presence of at least three different types of MCSs that responded differently to changes in cellular lipid loading status.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Microscopy, Electron , Mitochondria/metabolism , Protein Transport
4.
Mol Biol Cell ; 32(12): 1158-1170, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826365

ABSTRACT

The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.


Subject(s)
Autophagy-Related Proteins/physiology , Autophagy , Endoplasmic Reticulum/metabolism , Membrane Proteins/physiology , Nogo Proteins/metabolism , Autophagy-Related Proteins/genetics , Cell Line , Endoplasmic Reticulum/physiology , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Protein Domains
5.
Dev Cell ; 45(2): 245-261.e6, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29689198

ABSTRACT

The Golgi apparatus is the central hub for protein trafficking and glycosylation in the secretory pathway. However, how the Golgi responds to glucose deprivation is so far unknown. Here, we report that GRASP55, the Golgi stacking protein located in medial- and trans-Golgi cisternae, is O-GlcNAcylated by the O-GlcNAc transferase OGT under growth conditions. Glucose deprivation reduces GRASP55 O-GlcNAcylation. De-O-GlcNAcylated GRASP55 forms puncta outside of the Golgi area, which co-localize with autophagosomes and late endosomes/lysosomes. GRASP55 depletion reduces autophagic flux and results in autophagosome accumulation, while expression of an O-GlcNAcylation-deficient mutant of GRASP55 accelerates autophagic flux. Biochemically, GRASP55 interacts with LC3-II on the autophagosomes and LAMP2 on late endosomes/lysosomes and functions as a bridge between LC3-II and LAMP2 for autophagosome and lysosome fusion; this function is negatively regulated by GRASP55 O-GlcNAcylation. Therefore, GRASP55 senses glucose levels through O-GlcNAcylation and acts as a tether to facilitate autophagosome maturation.


Subject(s)
Acetylglucosamine/metabolism , Autophagosomes/metabolism , Endosomes/metabolism , Glucose/deficiency , Golgi Apparatus/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Autophagy , Golgi Matrix Proteins , HeLa Cells , Humans , Protein Processing, Post-Translational , Protein Transport
6.
Micron ; 77: 25-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26093476

ABSTRACT

The spermatozoa from testis and spermatheca of the plant-parasitic nematode Trichodorus similis Seinhorst, 1963 (Nematoda; Triplonchida; Trichodoridae) were studied with transmission electron microscopy (TEM), being the first study on spermatogenesis of a representative of the order Triplonchida and important to unravel nematode sperm evolution. Comprehensive results could only be obtained using high-pressure freezing (HPF) and freeze-substitution instead of chemical fixation, demonstrating the importance of cryo-fixation for nematode ultrastructural research. The spermatozoa from the testis (immature spermatozoa) are unpolarized cells covered by numerous filopodia. They contain a centrally-located nucleus without a nuclear envelope, surrounded by mitochondria. Specific fibrous bodies (FB) as long parallel bundles of filaments occupy the peripheral cytoplasm. No structures resembling membranous organelles (MO), as found in the sperm of many other nematodes, were observed in immature spermatozoa of T. similis. The spermatozoa from the uterus (mature or activated spermatozoa) are bipolar cells with an anterior pseudopod and posterior main cell body (MCB), which include a nucleus, mitochondria and MO appearing as large vesicles with finger-like invaginations of the outer cell membrane, or as large vesicles connected to the inner cell membrane. The peripheral MO open to the exterior via pores. In the mature sperm, neither FBs nor filopodia were observed. An important feature of T. similis spermatozoa is the late formation of MO; they first appear in mature spermatozoa. This pattern of MO formation is known for several other orders of the nematode class Enoplea: Enoplida, Mermithida, Dioctophymatida, Trichinellida but has never been observed in the class Chromadorea.


Subject(s)
Freezing , Nematoda/ultrastructure , Spermatozoa/ultrastructure , Animals , Cell Nucleus/ultrastructure , Freeze Substitution , Male , Microscopy, Electron, Transmission , Nuclear Envelope/ultrastructure , Plants/parasitology , Pseudopodia/ultrastructure , Sperm Maturation , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...