Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 27: 230-245, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36320412

ABSTRACT

Antigen-specific T cell expansion ex vivo followed by adoptive transfer enables targeting of a multitude of microbial and cancer antigens. However, clinical-scale T cell expansion from rare precursors requires repeated stimulation, which may lead to T cell dysfunction and limited therapeutic potential. We used a clinically compliant protocol to expand Epstein-Barr virus (EBV) and Wilms tumor 1 (WT1) antigen-specific CD8+ T cells, and leveraged T cell exhaustion-associated inhibitory receptor blockade to improve T cell expansion. Several inhibitory receptors were expressed early by ex vivo-expanded antigen-specific CD8+ T cells, including PD-1 and TIM3, with co-expression matching evidence of T cell dysfunction as the cultures progressed. Introduction of anti-PD-L1 and anti-TIM3 blockade in combination (but not individually) to the culture led to markedly improved antigen-specific T cell expansion without inducing T cell dysfunction. Single-cell RNA sequencing (RNA-seq) and T cell receptor (TCR) repertoire profiling revealed that double blockade does not impart specific transcriptional programs in T cells or alterations in TCR repertoires. However, combined blockade may affect gene expression in a minority of clonotypes in a donor-specific fashion. We conclude that antigen-specific CD8+ T cell manufacturing can be improved by using TIM3 and PD-L1/PD-1 axis blockade in combination. This approach is readily applicable to several adoptive immunotherapy strategies.

2.
Iran Biomed J ; 22(4): 237-45, 2018 07.
Article in English | MEDLINE | ID: mdl-29132205

ABSTRACT

Background: Bone marrow mesenchymal stem cells (BM-MSCs) have emerged as a potential therapy for various inflammatory diseases. Because of some limitations, several recent studies have suggested the use of embryonic stem cell-derived MSCs (ESC-MSCs) as an alternative for BM-MSCs. Some of the therapeutic effects of the ESC-MSCs are related to the secretion of a broad array of cytokines and growth factors, known as secretome. Harnessing this secretome for therapeutic applications requires the optimization of production of secretary molecules. It has been shown that aggregation of MSCs into 3D spheroids, as a preconditioning strategy, can enhance immunomodulatory potential of such cells. In this study, we investigated the effect of secretome derived from human ESC-MSCs (hESC-MSCs) spheroids on secretion of IL-1ß, IL-10, and tumor necrosis factor α (TNF-α) from lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMCs). Methods: In the present study, after immunophenotyping and considering mesodermal differentiation of hESC-MSCs, the cells were non-adherently grown to prepare 3D aggregates, and then conditioned medium or secretome was extracted from the cultures. Afterwards, the anti-inflammatory effects of the secretome were assessed in an in vitro model of inflammation. Results: Results from this study showed that aggregate-prepared secretome from hESC-MSCs was able to significantly decrease the secretion of TNF-α (301.7 ± 5.906, p < 0.0001) and IL-1ß (485.2 ± 48.38, p < 0.001) from LPS-induced PBMCs as the indicators of inflammation, in comparison with adherent culture-prepared secretome (TNF-α: 166.6 ± 8.04, IL-1ß: 125.2 ± 2.73). Conclusion: Our study indicated that cell aggregation can be an appropriate strategy to increase immunomodulatory characteristics of hESC-MSCs.

3.
Iran Biomed J ; 21(1): 24-31, 2017 01.
Article in English | MEDLINE | ID: mdl-27132108

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are important candidates for MSC-based cellular therapy. Current paradigm states that MSCs support local progenitor cells in damaged tissue through paracrine signaling. Therefore, study of paracrine effects and secretome of MSCs could lead to the appreciation of mechanisms and molecules associated with the therapeutic effects of these cells. This study analyzed anti-inflammatory and immune-modulatory effects of MSC secretomes derived from embryonic stem cells (ESCs) and bone marrow cells after hypoxia and normoxia preconditioning. METHODS: ESCs differentiated into MSCs and characterized by flow cytometry and differentiation into adipocytes and osteoblasts. The experimental groups consisted of individual groups of ESC-MSCs and BM-MSCs (bone marrow-derived mesenchymal stromal cells), which were preconditioned with either hypoxia or normoxia for 24, 48 and 72 h. After collecting the cell-free medium from each treatment, secretomes were concentrated by centrifugal filters. Using a peripheral blood mononuclear cell (PBMC) assay and ELISA, IL-10 concentration in PBMCs was evaluated after their incubation with different secretomes from preconditioned and non-preconditioned MSCs. RESULTS: A significant difference was observed between ESC-MSC normoxia and ESC-MSC hypoxia in IL-10 concentration, and normoxia secretomes increased IL-10 secretion from PBMCs. Moreover, the strongest IL-10 secretion from PBMCs could be detected after the stimulation by ESC-MSC conditioned secretomes, but not BM-MSC conditioned medium. CONCLUSIONS: Human hypoxia preconditioned ESC-MSC secretome indicated stronger immune-modulatory effects compared to BM-MSC conditioned medium. It could be suggested that induced MSCs confer less immune-modulatory effects but produce more inflammatory molecules such as tumor necrosis factor α, which needs further investigation.

4.
Int J Artif Organs ; 39(10): 524-533, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27901555

ABSTRACT

INTRODUCTION: Amid the plethora of methods to repair critical bone defects, there is no one perfect approach. In this study, we sought to evaluate a potent 3-dimensional (3D) bioactive SiO2-CaO-P2O5 glasses (bioglass)/gelatin (gel) scaffold for its biocompatibility by seeding cells as well as for its regenerative properties by animal implantation. METHODS: Osteoblast cells were seeded onto nanocomposite scaffolds to investigate the process of critical-size calvarial defect via new bone formation. Scanning electron microscopy (SEM) was used to validate topography of the scaffolds, its homogeneity and ideal cellular attachment. Proliferation assay and confocal microscopy were used to evaluate its biocompatibility. To validate osteogenesis of the bioactive nanocomposite scaffolds, they were first implanted into rats and later removed and analyzed at different time points post mortem using histological, immunohistochemical and histomorphometric methods. RESULTS: Based on in vitro results, we showed that our nanocomposite is highly cell-compatible material and allows for osteoblasts to adhere, spread and proliferate. In vivo results indicate that our nanocomposite provides a significant contribution to bone regeneration and is highly biodegradable and biocompatible. So, seeded scaffolds with osteoblasts enhanced repair of critical bone defects via osteogenesis. CONCLUSIONS: We demonstrate the feasibility of engineering a nanocomposite scaffold with an architecture resembling the human bone, and provide proof-of-concept validation for our scaffold using a rat animal model.


Subject(s)
Bone Substitutes , Ceramics , Osteoblasts , Skull/surgery , Tissue Scaffolds , Animals , Bone Regeneration , Cell Adhesion , Cell Line , Cell Survival , Gelatin/chemistry , Materials Testing , Nanocomposites , Osteogenesis , Rats, Wistar , Skull/injuries , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...