Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Pharmacol Ther ; 110(6): 1558-1569, 2021 12.
Article in English | MEDLINE | ID: mdl-34390503

ABSTRACT

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious drug-related adverse event. To identify pharmacogenomic markers of MRONJ associated with bisphosphonate therapy, we conducted a genomewide association study (GWAS) meta-analysis followed by functional analysis of 5,008 individuals of European ancestry treated with bisphosphonates, which includes the largest number of MRONJ cases to date (444 cases and 4,564 controls). Discovery GWAS was performed in randomly selected 70% of the patients with cancer and replication GWAS was performed in the remaining 30% of the patients with cancer treated with intravenous bisphosphonates followed by meta-analysis of all 3,639 patients with cancer. GWAS was also performed in 1,369 patients with osteoporosis treated with oral bisphosphonates. The lead single-nucleotide polymorphism (SNP), rs2736308 on chromosome 8, was associated with an increased risk of MRONJ with an odds ratio (OR) of 2.71 and 95% confidence interval (CI) of 1.90-3.86 (P = 3.57*10-8 ) in the meta-analysis of patients with cancer. This SNP was validated in the MRONJ GWAS in patients with osteoporosis (OR: 2.82, 95% CI: 1.55-4.09, P = 6.84*10-4 ). The meta-analysis combining patients with cancer and patients with osteoporosis yielded the same lead SNP rs2736308 on chromosome 8 as the top SNP (OR: 2.74, 95% CI: 2.09-3.39, P = 9.65*10-11 ). This locus is associated with regulation of the BLK, CTSB, and FDFT1 genes, which had been associated with bone mineral density. FDFT1 encodes a membrane-associated enzyme, which is implicated in the bisphosphonate pathway. This study provides insights into the potential mechanism of MRONJ.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw/genetics , Chromosomes, Human, Pair 8/genetics , Genetic Loci/genetics , Genome-Wide Association Study/methods , Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnosis , Case-Control Studies , Diphosphonates/adverse effects , Diphosphonates/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Osteoporosis/drug therapy , Osteoporosis/genetics , Polymorphism, Single Nucleotide/genetics
2.
J Bone Miner Res ; 36(2): 347-356, 2021 02.
Article in English | MEDLINE | ID: mdl-32967053

ABSTRACT

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug reaction. Our previous whole-exome sequencing study found SIRT1 intronic region single-nucleotide polymorphism (SNP) rs7896005 to be associated with MRONJ in cancer patients treated with intravenous (iv) bisphosphonates (BPs). This study aimed to identify causal variants for this association. In silico analyses identified three SNPs (rs3758391, rs932658, and rs2394443) in the SIRT1 promoter region that are in high linkage disequilibrium (r2 > 0.8) with rs7896005. To validate the association between these SNPs and MRONJ, we genotyped these three SNPs on the germline DNA from 104 cancer patients of European ancestry treated with iv BPs (46 cases and 58 controls). Multivariable logistic regression analysis showed the minor alleles of these three SNPs were associated with lower odds for MRONJ. The odds ratios (95% confidence interval) and p values were 0.351 (0.164-0.751; p = 0.007) for rs3758391, 0.351 (0.164-0.751; p = 0.007) for rs932658, and 0.331 (0.157-0.697; p = 0.0036) for rs2394443, respectively. In the reporter gene assays, constructs containing rs932658 with variant allele A had higher luciferase activity than the reference allele, whereas constructs containing SNP rs3758391 and/or rs2394443 did not significantly affect activity. These results indicate that the promoter SNP rs932658 regulates the expression of SIRT1 and presumably lowers the risk of MRONJ by increasing SIRT1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Osteonecrosis , Alleles , Bisphosphonate-Associated Osteonecrosis of the Jaw/genetics , Diphosphonates , Humans , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Sirtuin 1/genetics
3.
Toxicol Appl Pharmacol ; 283(2): 99-108, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25585350

ABSTRACT

Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch(ICN-TG)). Following exposure of adult Notch(ICN-TG) mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3µg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch(ICN-TG) offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch(ICN-TG) offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression.


Subject(s)
Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Receptor, Notch1/biosynthesis , T-Lymphocytes/drug effects , Thymoma/chemically induced , Animals , Animals, Newborn , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/pathology , Receptor, Notch1/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Thymoma/immunology , Thymoma/pathology
4.
Toxicol Appl Pharmacol ; 277(2): 172-82, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24709672

ABSTRACT

The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3µg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.


Subject(s)
B-Lymphocytes/drug effects , Cell Differentiation/drug effects , Environmental Pollutants/toxicity , Hematopoietic Stem Cells/drug effects , Polychlorinated Dibenzodioxins/toxicity , T-Lymphocytes/drug effects , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Developmental/drug effects , Gestational Age , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Lymphocyte Count , Maternal Exposure , Mice , Mice, Inbred C57BL , Pregnancy , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thymocytes/drug effects , Thymocytes/pathology , Time Factors , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...