Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8007): 287-292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600267

ABSTRACT

Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2-11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.

2.
Phys Rev Lett ; 132(13): 137102, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613292

ABSTRACT

We study diffusion in systems of classical particles whose dynamics conserves the total center of mass. This conservation law leads to several interesting consequences. In finite systems, it allows for equilibrium distributions that are exponentially localized near system boundaries. It also yields an unusual approach to equilibrium, which in d dimensions exhibits scaling with dynamical exponent z=4+d. Similar phenomena occur for dynamics that conserves higher moments of the density, which we systematically classify using a family of nonlinear diffusion equations. In the quantum setting, analogous fermionic systems are shown to form real-space Fermi surfaces, while bosonic versions display a real-space analog of Bose-Einstein condensation.

3.
Phys Rev Lett ; 131(4): 043403, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566868

ABSTRACT

We study Fermi-Hubbard models with kinetically constrained dynamics that conserves both total particle number and total center of mass, a situation that arises when interacting fermions are placed in strongly tilted optical lattices. Through a combination of analytics and numerics, we show how the kinetic constraints stabilize an exotic non-Fermi liquid phase described by fermions coupled to a gapless bosonic field, which in several respects mimics a dynamical gauge field. This offers a novel route towards the study of non-Fermi liquid phases in the precision environments afforded by ultracold atom platforms.

4.
Phys Rev Lett ; 120(3): 037204, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400534

ABSTRACT

We describe electron spin resonance in a quantum spin liquid with significant spin-orbit coupling. We find that the resonance directly probes spinon continuum, which makes it an efficient and informative probe of exotic excitations of the spin liquid. Specifically, we consider spinon resonance of three different spinon mean-field Hamiltonians, obtained with the help of projective symmetry group analysis, which model a putative quantum spin liquid state of the triangular rare-earth antiferromagnet YbMgGaO_{4}. The band of absorption is found to be very broad and exhibit strong van Hove singularities of single spinon spectrum as well as pronounced polarization dependence.

SELECTION OF CITATIONS
SEARCH DETAIL
...