Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Bioeng Biotechnol ; 12: 1310464, 2024.
Article in English | MEDLINE | ID: mdl-38444649

ABSTRACT

The utilization of compression garments (CGs) has demonstrated the potential to improve athletic performance; however, the specific mechanisms underlying this enhancement remain a subject of further investigation. This study aimed to examine the impact of CGs on running mechanics and muscle synergies from a neuromuscular control perspective. Twelve adult males ran on a treadmill at 12 km/h, while data pertaining to lower limb kinematics, kinetics, and electromyography were collected under two clothing conditions: whole leg compression garments and control. The Non-negative matrix factorization algorithm was employed to extract muscle synergy during running, subsequently followed by cluster analysis and correlation analysis. The findings revealed that the CGs increased knee extension and reduced hip flexion at foot strike compared with the control condition. Moreover, CGs were found to enhance stance-phase peak knee extension, while diminishing hip flexion and maximal hip extension during the stance-phase, and the ankle kinematics remained unaltered. We extracted and classified six synergies (SYN1-6) during running and found that only five SYNs were observed after wearing CGs. CGs altered the structure of the synergies and changed muscle activation weights and durations. The current study is the first to apply muscle synergy to discuss the effect of CGs on running biomechanics. Our findings provide neuromuscular evidence for the idea of previous studies that CGs alter the coordination of muscle groups, thereby affecting kinematic characteristics during running.

2.
Front Sports Act Living ; 4: 824183, 2022.
Article in English | MEDLINE | ID: mdl-35557980

ABSTRACT

Purpose: Midsole cushioning thickness (MT) is a key component of running footwear that may influence the stiffness setting of the joints, performance enhancement, and injury prevention. Most studies that have investigated the influence of manipulating shoe midsole characteristics on foot strike patterns and vertical force loading rates have not considered the dynamic conditions of initial landing and the associated initial lower limb joint stiffness. In this study, we examined the effect of running in shoes with large changes in MT on both the posture and dynamics associated with foot strike. Methods: 12 injury-free runners with habitual rearfoot strike patterns ran at 4.5 m/s along a 40-m runway in shoe conditions with MT of 30, 42, and 54 mm, respectively. Ground reaction force and the right leg kinematic data were collected. One-way repeated measures ANOVA was conducted to statistically analyze the effect of MT on key variables linked to foot strike. Results: Increased midsole thickness resulted in a slightly flatter foot strike posture (p < 0.05), a decreased shank retraction velocity (p < 0.05), and an increase in forward horizontal foot velocity (p < 0.05), all at initial ground contact. Vertical force loading rates were reduced with increasing MT (p < 0.05), but this was associated with large increases in the initial ankle and knee joint stiffness (p < 0.05). Conclusion: Adjustments in the initial conditions of contact with the ground during running were seen in both the posture and dynamics of the lower limbs. To help to mitigate the impact severity from foot-ground collision with the thinnest shoe condition, there was an increased shank retraction velocity and decreased forward velocity of the foot at landing. These active impact-moderating adaptations likely served to reduce the changes in impact severity expected due to midsole material properties alone and should be considered in relation to altering the risk of running-related injuries.

3.
J Cell Physiol ; 237(7): 2862-2876, 2022 07.
Article in English | MEDLINE | ID: mdl-35312042

ABSTRACT

We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion (ROM), muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48 h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n = 12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score, which enabled participants to be segregated into three polygenic groups: 'preferential' (more 'protective' alleles), 'moderate', and 'non-preferential'. The non-preferential group was consistently weaker than the preferential group (1.93 ± 0.81 vs. 2.73 ± 0.59 N ∙ m/kg; P = 9.51 × 10-4 ) and demonstrated more muscle soreness (p = 0.011) and a larger decrease in knee joint ROM (p = 0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, p ≤ 0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, p ≤ 0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the interindividual variability in the response to EIMD.


Subject(s)
Exercise , Muscle, Skeletal/physiology , Myalgia , Adult , Exercise/physiology , Humans , Muscle, Skeletal/pathology , Myalgia/genetics , Myalgia/pathology , Polymorphism, Single Nucleotide , Quadriceps Muscle/cytology , Quadriceps Muscle/physiology , Stem Cells/cytology , Torque
4.
Sports Biomech ; 21(6): 669-684, 2022 Jul.
Article in English | MEDLINE | ID: mdl-31762385

ABSTRACT

We aimed to quantify the contribution of lower body segment rotations in producing foot velocity during the soccer volley kick. Fifteen male experienced university players kicked a soccer ball placed at four height conditions (0, 25, 50 and 75 cm). Their kicking motion was captured at 500 Hz. The effectiveness of lower body segment rotations in producing forward (Ffv) and upward (Fuv) foot velocity were computed and time integrated. Major contributors for Ffv were a) left hip linear velocity, b) knee extension and c) pelvis retroflexion (the pitch rotation). The contribution of a) become smaller as the ball height increased while those of b) and c) did not change significantly. Moreover, the pelvis clockwise rotation (the yaw rotation) showed apparent contribution only for volley kicking (except 0 cm height). Major contributors for Fuv were 1) knee flexion, 2) hip internal rotation, 3) pelvis clockwise rotation (the roll rotation) and 4) hip flexion. The contributions of 1) and 4) become consistently smaller as the ball height increased, while those of 2) and 3) become larger systematically. Soccer volley kicking was found to have unique adaptations of segmental contributions to achieve higher foot position while maintain foot forward velocity.


Subject(s)
Soccer , Biomechanical Phenomena , Hip , Humans , Knee , Lower Extremity , Male
5.
Sports Biomech ; 20(6): 665-679, 2021 Sep.
Article in English | MEDLINE | ID: mdl-30896294

ABSTRACT

The objective of this study was to investigate how the inclusion of a cushioning underlay in a third-generation artificial turf (3G) affects player biomechanics during soccer-specific tasks. Twelve soccer players (9 males/3 females; 22.6 ± 2.3 y) participated in this study. Mechanical impact testing of each 3G surface; without (3G-NCU) and with cushioning underlay (3G-CU) were conducted. Impact force characteristics, joint kinematics and joint kinetics variables were calculated on each surface condition during a sprint 90° cut (90CUT), a sprint 180° cut (180CUT), a drop jump (DROP) and a sprint with quick deceleration (STOP). For all tasks, greater peak resultant force, peak knee extensor moment and peak ankle dorsi-flexion moment were found in 3G-NCU than 3G-CU (p < 0.05). During 90CUT and STOP, loading rates were higher in 3G-NCU than 3G-CU (p < 0.05). During 180CUT, higher hip, knee and ankle ranges of motion were found in 3G-NCU (p < 0.05). These findings showed that the inclusion of cushioning underlay in 3G reduces impact loading forces and lower limb joint loading in soccer players across game-specific tasks. Overall, players were not attempting to reduce higher lower limb impact loading associated with a lack of surface cushioning underlay.


Subject(s)
Athletic Performance/physiology , Environment Design , Lower Extremity/physiology , Movement/physiology , Soccer/physiology , Weight-Bearing/physiology , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Male , Surface Properties , Young Adult
6.
J Sports Sci ; 38(2): 206-213, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31722621

ABSTRACT

A novel 3D motion capture analysis assessed the efficacy of insoles in maintaining the foot position on the midsole platform inside the shoe during rapid change of direction manoeuvres used in team sports. An insole (TI) with increased static (35%) and dynamic (49%) coefficient of friction compared to a regular insole (SI) was tested. Change of direction performance was faster (p < .001) and perceived to be faster (p < .001) in TI compared to SI. Participants utilised greater coefficient of friction in TI compared to SI during a complete turn, but not during a 20 degree side-cut. In-shoe foot sliding reduced across the forefoot and midfoot during the braking phase of the turn and in the rearfoot during the side-cut in TI. Greater in-shoe foot sliding occurred in the turn than the side-cut across all foot regions. Results provide guidance for athletic footwear design to help limit in-shoe foot sliding and improve change of direction performance.


Subject(s)
Athletic Performance/physiology , Equipment Design , Motor Skills/physiology , Shoes , Adult , Athletic Performance/psychology , Biomechanical Phenomena , Female , Friction , Humans , Male , Perception , Time and Motion Studies , Young Adult
7.
Mil Med ; 185(3-4): e466-e472, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31865377

ABSTRACT

INTRODUCTION: Roughly 13% of all battlefield injuries include some form of ocular trauma. Ocular tissue preservation is critical for wound healing for warfighters with ocular injuries. Our team hypothesized that oxygen plays a vital role in ocular tissue preservation and wound healing and has developed a supersaturated oxygen emulsion (SOE) for the topical treatment of ocular trauma. MATERIALS AND METHODS: The partial pressure of oxygen (PO2) was measured in the SOE. Safety and efficacy studies were carried out in primary human corneal epithelial (HCE) cells, as the outermost layer is the first barrier to chemical and mechanical injury. Western blot, scratch assay, and MTT assays were conducted to determine the effect of the SOE on various molecular markers, the rate of scratch closure, and cellular viability, respectively. RESULTS: Data indicate that the SOE releases oxygen in a time-dependent manner, reaching a partial pressure within the emulsion over four times atmospheric levels. Studies in HCE cells indicate that application of the SOE does not lead to DNA damage, promote cell death, or hinder the rate of scratch closure and enhances cellular viability. Preliminary studies were carried out with chloropicrin (CP; developed as a chemical warfare agent and now a commonly used pesticide) as a chemical agent to induce ocular injury in HCE cells. CP exposures showed that SOE treatment reverses CP-induced DNA damage, apoptotic cell death, and oxidative stress markers. CONCLUSIONS: Maintaining adequate tissue oxygenation is critical for tissue preservation and wound repair, especially in avascular tissues like the cornea. Further studies examining the application of the SOE in corneal injury models are warranted.


Subject(s)
Corneal Injuries , Epithelium, Corneal , Administration, Topical , Cornea , Corneal Injuries/therapy , Emulsions , Humans , Oxygen
8.
J Sports Sci ; 37(17): 1951-1961, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027453

ABSTRACT

Unstable footwear may enhance training effects to the lower-limb musculature and sensorimotor system during dynamic gym movements. This study compared the instability of an unstable shoe with irregular midsole deformations (IM) and a control shoe (CS) during forward and lateral lunges. Seventeen female gym class participants completed two sets of ten forward and lateral lunges in CS and IM. Ground reaction forces, lower-limb kinematics and ankle muscle activations were recorded. Variables around initial ground contact, toe-off, descending and ascending lunge phases were compared statistically (p < .05). Responses to IM compared to CS were similar across lunge directions. The IM induced instability by increasing the vertical loading rate (p < .001, p = .009) and variability of frontal ankle motion during descending (p = .001, p < .001) and ascending phases (p = .150, p = .003), in forward and lateral lunges, respectively. At initial ground contact, ankle adjustments enhanced postural stability in IM. Across muscles, there were no activation increases, although results indicate peroneus longus activations increased in IM during the ascending phase. As expected, IM provided a more demanding training stimulus during lunge exercises and has potential to reduce ankle injuries by training ankle positioning for unpredictable instability.


Subject(s)
Ankle/physiology , Muscle, Skeletal/physiology , Posture , Shoes , Biomechanical Phenomena , Electromyography , Female , Humans , Spatio-Temporal Analysis , Young Adult
9.
Hum Mov Sci ; 59: 112-120, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29653340

ABSTRACT

Different modes of perturbations have been used to understand how individuals negotiate irregular surfaces, with a general notion that increased locomotion variability induces a positive training stimulus. Individuals tend to walk slower when initially exposed to such locomotion tasks, potentially influencing the magnitude and variability of biomechanical parameters. This study investigated theeffects of gait speed on lower extremity biomechanics when walking on an irregular (IS) and regular surface (RS). Twenty physically active males walked on a RS and IS at three different speeds (4 km/h, 5 km/h, 6 km/h). Lower extremity kinematics (300 Hz) and surface electromyography (3000 Hz) were recorded during the first 90 s of gait. Two-factor repeated measures ANOVA was used to determine surface and speed effects (p < 0.05). Gait speed influences walking biomechanics (kinematic and muscle activity parameters) the same irrespective of surface condition. As walking speed increased, sagittal shoe-surface angle, maximum ankle inversion, ankle abduction, knee and hip flexion increased during stance phase when walking on the IS and RS (p < 0.05). Increasing walking speed caused increased muscle activity of the tibialis anterior, peroneus longus, gastrocnemius medialis, vastus medialis and biceps femoris (p < 0.05) on the IS and RS during the gait cycle. Increased gait, kinematic and muscle activity variability was reported at lower walking speed on both the IS and RS. Further, irrespective of gait speed, walking on an IS triggers postural adjustments, higher muscle activity and increased gait variability compared to RS walking. Our findings suggest the benefits of training on the irregular surface may be further enhanced at slower gait speeds.


Subject(s)
Gait/physiology , Lower Extremity/physiology , Adolescent , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Electromyography/methods , Exercise Test/methods , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Muscle, Skeletal/physiology , Postural Balance/physiology , Shoes , Walking/physiology , Walking Speed/physiology , Young Adult
10.
J Appl Physiol (1985) ; 122(3): 653-665, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27932678

ABSTRACT

It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training.NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds.


Subject(s)
Adaptation, Physiological/physiology , Energy Transfer/physiology , High-Intensity Interval Training , Knee Joint/physiology , Muscle, Skeletal/physiology , Physical Exertion/physiology , Running/physiology , Elastic Modulus/physiology , Female , Humans , Male , Physical Endurance/physiology , Young Adult
11.
J Electromyogr Kinesiol ; 31: 55-62, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27684529

ABSTRACT

Unstable shoes (US) continually perturb gait which can train the lower limb musculature, but muscle co-contraction and potential joint stiffness strategies are not well understood. A shoe with a randomly perturbing midsole (IM) may enhance these adaptations. This study compares ankle and knee joint stiffness, and ankle muscle co-contraction during walking and running in US, IM and a control shoe in 18 healthy females. Ground reaction forces, three-dimensional kinematics and electromyography of the gastrocnemius medialis and tibialis anterior were recorded. Stiffness was calculated during loading and propulsion, derived from the sagittal joint angle-moment curves. Ankle co-contraction was analysed during pre-activation and stiffness phases. Ankle stiffness reduced and knee stiffness increased during loading in IM and US whilst walking (ankle, knee: p=0.008, 0.005) and running (p<0.001; p=0.002). During propulsion, the opposite joint stiffness re-organisation was found in IM whilst walking (both joints p<0.001). Ankle co-contraction increased in IM during pre-activation (walking: p=0.001; running: p<0.001), and loading whilst walking (p=0.003), not relating to ankle stiffness. Results identified relative levels of joint stiffness change in unstable shoes, providing new evidence of how stability is maintained at the joint level.


Subject(s)
Adaptation, Physiological , Ankle Joint/physiology , Muscle Contraction , Running/physiology , Shoes/standards , Walking/physiology , Adult , Biomechanical Phenomena , Female , Gait , Humans , Knee Joint/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular , Shoes/adverse effects
13.
Eur J Appl Physiol ; 116(9): 1595-625, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27294501

ABSTRACT

Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.


Subject(s)
Aging/genetics , Athletic Performance , Cumulative Trauma Disorders/genetics , Muscle, Skeletal/injuries , Muscle, Skeletal/physiopathology , Muscular Diseases/genetics , Aging/immunology , Cumulative Trauma Disorders/immunology , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Models, Genetic , Muscle, Skeletal/immunology , Muscular Diseases/immunology , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology
14.
J Appl Biomech ; 32(3): 261-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26695109

ABSTRACT

The purpose of this study was to investigate the effects of prolonged high-intensity running on impact accelerations in trained runners. Thirteen male distance runners completed two 20-minute treadmill runs at speeds corresponding to 95% of onset of blood lactate accumulation. Leg and head accelerations were collected for 20 s every fourth minute. Rating of perceived exertion (RPE) scores were recorded during the third and last minute of each run. RPE responses increased (P < .001) from the start (11.8 ± 0.9, moderate intensity) of the first run to the end (17.7 ± 1.5, very hard) of the second run. Runners maintained their leg impact acceleration, impact attenuation, stride length, and stride frequency characteristics with prolonged run duration. However, a small (0.11-0.14g) but significant increase (P < .001) in head impact accelerations were observed at the end of both first and second runs. It was concluded that trained runners are able to control leg impact accelerations during sustained high-intensity running. Alongside the substantial increases in perceived exertion levels, running mechanics and frequency domain impact attenuation levels remained constant. This suggests that the present trained runners are able to cope from a mechanical perspective despite an increased physiological demand.


Subject(s)
Physical Exertion/physiology , Running/physiology , Acceleration , Adult , Biomechanical Phenomena , Exercise Test , Humans , Male , Time Factors
15.
Hum Biol ; 87(3): 151-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26932567

ABSTRACT

Several forms of social learning rely on the direct or indirect evaluation of the fitness of cultural traits. Here we argue, via a simple agent-based model, that payoff uncertainty, that is, the correlation between a trait and the signal used to evaluate its fitness, plays a pivotal role in the spread of beneficial innovation. More specifically, we examine how this correlation affects the evolutionary dynamics of different forms of social learning and how each form can generate divergent historical trajectories depending on the size of the sample pool. In particular, we demonstrate that social learning by copying the best model is particularly susceptible to a sampling effect caused by the interaction of payoff uncertainty, the number of models sampled (the sample pool), and the frequency with which a trait is present in the population. As a result, we identify circumstances in which smaller sample pools can act as "cultural incubators" that promote the spread of innovations, while more widespread sampling of the population actually retards the rate of cultural evolution.


Subject(s)
Cultural Evolution , Social Learning , Humans , Models, Theoretical , Population Density
16.
J Sports Sci ; 32(20): 1897-1905, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25394197

ABSTRACT

Abstract The mechanics of cutting movements have been investigated extensively, but few studies have considered the rapid deceleration phase prior to turning which has been linked to muscle damage. This study used accelerometry to examine the influence of turning intensity on the last three steps of a severe turn. Ten soccer players performed 135° "V" cuts at five different intensities. Resultant decelerations were recorded from a trunk-mounted tri-axial accelerometer. Lower limb kinematics and ground reaction forces (GRF) from the pivot foot-ground contact (FGC) were also monitored. Average peak trunk decelerations were larger at the two preceding steps (4.37 ± 0.12 g and 4.58 ± 0.11 g) compared to the PIVOT step (4.10 ± 0.09 g). Larger peak joint flexion angular velocities were observed at PRE step (ankle: 367 ± 192 deg.s-1; knee 493 ± 252  deg.s-1) compared to PIVOT step (ankle 255 ± 183 deg.s-1; knee 377 ± 229 deg.s-1). Turn intensity did not influence peak GRF at PIVOT step. This study highlights the importance of steps prior to turning and their high-frequency loading characteristics. It is suggested that investigations of lower limb loading during turning should include this deceleration phase and not focus solely on pivot FGC.

17.
Med Sci Sports Exerc ; 46(5): 973-81, 2014.
Article in English | MEDLINE | ID: mdl-24121245

ABSTRACT

PURPOSE: The purpose of this study was to determine whether real-time feedback (RTF) training would reduce impact loading variables previously linked with tibial stress fracture risk and whether these adaptations would influence running economy. METHODS: Twenty-two male runners were randomly assigned to RTF (n = 12) and control (n = 10) groups. The RTF group received feedback based on their peak tibial axial accelerations (PTA) during six 20-min treadmill runs for 3 wk, whereas the control group adhered to the same training but without feedback. Unilateral three-dimensional kinematic and kinetic analysis and running economy measurements were conducted before, after, and at 1 month posttraining. RESULTS: The RTF group had significant reductions (P < 0.01) in PTA and average and instantaneous vertical force loading rates after training as compared with no changes in the control group. These modifications in impact loads were only maintained in PTA 1 month after the training. A significant increase (P = 0.0033) in ankle plantarflexion at initial contact and a significant change (P = 0.030) in foot strike pattern from a rearfoot to midfoot strike pattern and a significant decrease (P = 0.008) in heel vertical velocity at initial contact appeared to be the primary mechanical strategies adopted by runners to reduce impact loading after RTF training. Despite these gait adaptations, running economy was unaffected. CONCLUSIONS: The results of this study suggest that gait retraining using RTF is an effective means of eliciting reductions in impact loading without negatively affecting running economy. However, with loading rate reductions not being maintained 1 month posttraining, further research is required to determine how these reductions in impact severity can be retained long term.


Subject(s)
Feedback, Sensory , Gait/physiology , Physical Education and Training/methods , Running/physiology , Tibia/physiology , Biomechanical Phenomena , Fractures, Stress/prevention & control , Humans , Male , Tibia/injuries , Tibial Fractures/prevention & control
18.
J Appl Biomech ; 30(2): 206-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24042098

ABSTRACT

The metatarsophalangeal joint is an important contributor to lower limb energetics during sprint running. This study compared the kinematics, kinetics and energetics of the metatarsophalangeal joint during sprinting barefoot and wearing standardized sprint spikes. The aim of this investigation was to determine whether standard sprinting footwear alters the natural motion and function of the metatarsophalangeal joint exhibited during barefoot sprint running. Eight trained sprinters performed maximal sprints along a runway, four sprints in each condition. Three-dimensional high-speed (1000 Hz) kinematic and kinetic data were collected at the 20 m point. Joint angle, angular velocity, moment, power and energy were calculated for the metatarsophalangeal joint. Sprint spikes significantly increase sprinting velocity (0.3 m/s average increase), yet limit the range of motion about the metatarsophalangeal joint (17.9% average reduction) and reduce peak dorsiflexion velocity (25.5% average reduction), thus exhibiting a controlling affect over the natural behavior of the foot. However, sprint spikes improve metatarsophalangeal joint kinetics by significantly increasing the peak metatarsophalangeal joint moment (15% average increase) and total energy generated during the important push-off phase (0.5 J to 1.4 J). The results demonstrate substantial changes in metatarsophalangeal function and potential improvements in performance-related parameters due to footwear.


Subject(s)
Metatarsophalangeal Joint/physiology , Running/physiology , Shoes , Absorptiometry, Photon , Adult , Biomechanical Phenomena , Female , Humans , Male , Range of Motion, Articular/physiology
19.
J Sports Sci ; 30(14): 1521-7, 2012.
Article in English | MEDLINE | ID: mdl-22867449

ABSTRACT

The metatarsophalangeal joint (MPJ) is a significant absorber of energy in sprinting. This study examined the influence of MPJ axis choice and filter cut-off frequency on kinetic variables describing MPJ function during accelerated sprinting. Eight trained sprinters performed maximal sprints along a runway. Three-dimensional high-speed (1000 Hz) kinematic and kinetic data were collected at the 20 m point. Three axis definitions for the five MPJs were compared. MPJ moments, powers and energies were calculated using different filter cut-off frequencies. The more anatomically appropriate dual axis resulted in less energy absorbed at the MPJ compared to the oblique axis which also absorbed less energy compared to the perpendicular axis. Furthermore, a low cut-off frequency (8 Hz) substantially underestimated MPJ kinematics, kinetics and the energy absorbed at the joint and lowered the estimate of energy production during push-off. It is concluded that a better understanding of MPJ function during sprinting would be obtained by using an oblique or anatomically appropriate representation of the joint together with appropriate kinematic data sampling and filtering so that high frequency movement characteristics are retained.


Subject(s)
Metatarsophalangeal Joint/physiology , Movement/physiology , Running/physiology , Task Performance and Analysis , Weight-Bearing/physiology , Adolescent , Adult , Biomechanical Phenomena , Female , Humans , Male , Young Adult
20.
Med Sci Sports Exerc ; 44(10): 1917-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22525776

ABSTRACT

PURPOSE: The purpose of this study was to investigate the acute effects of progressive fatigue on the parameters of running mechanics previously associated with tibial stress fracture risk. METHODS: Twenty-one trained male distance runners performed three sets (Pre, Mid, and Post) of six overground running trials at 4.5 m.s(-1) (± 5%). Kinematic and kinetic data were collected during each trial using a 12-camera motion capture system, force platform, and head and leg accelerometers. Between tests, each runner ran on a treadmill for 20 min at their corresponding lactate threshold (LT) speed. Perceived exertion levels (RPE) were recorded at the third and last minute of each treadmill run. RESULTS: RPE scores increased from 11.8 ± 1.3 to 14.4 ± 1.5 at the end of the first LT run and then further to 17.4 ± 1.6 by the end of the second LT run. Peak rearfoot eversion, peak axial head acceleration, peak free moment and vertical force loading rates were shown to increase (P < 0.05) with moderate-large effect sizes during the progression from Pre to Post tests, although vertical impact peak and peak axial tibial acceleration were not significantly affected by the high-intensity running bouts. CONCLUSION: Previously identified risk factors for impact-related injuries (such as tibial stress fracture) are modified with fatigue. Because fatigue is associated with a reduced tolerance for impact, these findings lend support to the importance of those measures to identify individuals at risk of injury from lower limb impact loading during running.


Subject(s)
Fractures, Stress/physiopathology , Muscle Fatigue/physiology , Running/physiology , Tibia/physiopathology , Adult , Biomechanical Phenomena , Humans , Lactic Acid/blood , Male , Middle Aged , Physical Exertion/physiology , Risk , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...