Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37873263

ABSTRACT

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for over 99.8% of all possible coding single nucleotide variants and resolved 310 clinically reported variants of uncertain significance with high confidence, enhancing clinical variant interpretation in dystroglycanopathies. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.

2.
Nat Commun ; 14(1): 6113, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777527

ABSTRACT

Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia.


Subject(s)
Leukemia , Mitochondria , Humans , Mitochondria/genetics , DNA, Mitochondrial/genetics , Heteroplasmy , Leukemia/genetics , Mutation
3.
Hum Mol Genet ; 32(15): 2441-2454, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37133451

ABSTRACT

MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Multiomics , Mutation , Ribosomal Proteins/genetics
4.
J Neuromuscul Dis ; 10(3): 381-387, 2023.
Article in English | MEDLINE | ID: mdl-37005889

ABSTRACT

BACKGROUND: Recessive pathogenic variants in LAMA2 resulting in complete or partial loss of laminin α2 protein cause congenital muscular dystrophy (LAMA2 CMD). The prevalence of LAMA2 CMD has been estimated by epidemiological studies to lie between 1.36-20 cases per million. However, prevalence estimates from epidemiological studies are vulnerable to inaccuracies owing to challenges with studying rare diseases. Population genetic databases offer an alternative method for estimating prevalence. OBJECTIVE: We aim to use population allele frequency data for reported and predicted pathogenic variants to estimate the birth prevalence of LAMA2 CMD. METHODS: A list of reported pathogenic LAMA2 variants was compiled from public databases, and supplemented with predicted loss of function (LoF) variants in the Genome Aggregation Database (gnomAD). gnomAD allele frequencies for 273 reported pathogenic and predicted LoF LAMA2 variants were used to calculate disease prevalence using a Bayesian methodology. RESULTS: The world-wide birth prevalence of LAMA2 CMD was estimated to be 8.3 per million (95% confidence interval (CI) 6.27 -10.5 per million). The prevalence estimates for each population in gnomAD varied, ranging from 1.79 per million in East Asians (95% CI 0.63 -3.36) to 10.1 per million in Europeans (95% CI 6.74 -13.9). These estimates were generally consistent with those from epidemiological studies, where available. CONCLUSIONS: We provide robust world-wide and population-specific birth prevalence estimates for LAMA2 CMD, including for non-European populations in which LAMA2 CMD prevalence hadn't been studied. This work will inform the design and prioritization of clinical trials for promising LAMA2 CMD treatments.


Subject(s)
Muscular Dystrophies , Humans , Bayes Theorem , Prevalence , Muscular Dystrophies/epidemiology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Laminin/genetics , Alleles
5.
Trends Genet ; 38(9): 956-971, 2022 09.
Article in English | MEDLINE | ID: mdl-35908999

ABSTRACT

Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.


Subject(s)
Neuromuscular Diseases , Quality of Life , Genetic Testing , High-Throughput Nucleotide Sequencing , High-Throughput Screening Assays , Humans , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics
6.
Bioinformatics ; 38(10): 2967-2969, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561159

ABSTRACT

SUMMARY: We present MitoVisualize, a new tool for analysis of the human mitochondrial DNA (mtDNA). MitoVisualize enables visualization of: (i) the position and effect of variants in mitochondrial transfer RNA and ribosomal RNA secondary structures alongside curated variant annotations, (ii) data across RNA structures, such as to show all positions with disease-associated variants or with post-transcriptional modifications and (iii) the position of a base, gene or region in the circular mtDNA map, such as to show the location of a large deletion. All visualizations can be easily downloaded as figures for reuse. MitoVisualize can be useful for anyone interested in exploring mtDNA variation, though is designed to facilitate mtDNA variant interpretation in particular. AVAILABILITY AND IMPLEMENTATION: MitoVisualize can be accessed via https://www.mitovisualize.org/. The source code is available at https://github.com/leklab/mito_visualize/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA, Mitochondrial , Software , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , RNA/chemistry , RNA/genetics , RNA, Mitochondrial/genetics
7.
Genet Med ; 24(4): 784-797, 2022 04.
Article in English | MEDLINE | ID: mdl-35148959

ABSTRACT

PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.


Subject(s)
Exome , Genomics , Genetic Association Studies , Humans , Phenotype , Exome Sequencing
8.
Genome Res ; 32(3): 569-582, 2022 03.
Article in English | MEDLINE | ID: mdl-35074858

ABSTRACT

Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three technical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Gene Frequency , Genome , Humans , Mitochondria/genetics , Sequence Analysis, DNA
9.
Med ; 2(1): 49-73, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33575671

ABSTRACT

BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.


Subject(s)
Cardiomyopathies , Heart Failure , Mitochondrial Diseases , ATPases Associated with Diverse Cellular Activities/genetics , Australia , Child , Humans , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , United States
10.
Genet Med ; 21(11): 2512-2520, 2019 11.
Article in English | MEDLINE | ID: mdl-31105274

ABSTRACT

PURPOSE: Limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous category of autosomal inherited muscle diseases. Many genes causing LGMD have been identified, and clinical trials are beginning for treatment of some genetic subtypes. However, even with the gene-level mechanisms known, it is still difficult to get a robust and generalizable prevalence estimation for each subtype due to the limited amount of epidemiology data and the low incidence of LGMDs. METHODS: Taking advantage of recently published exome and genome sequencing data from the general population, we used a Bayesian method to develop a robust disease prevalence estimator. RESULTS: This method was applied to nine recessive LGMD subtypes. The estimated disease prevalence calculated by this method was largely comparable with published estimates from epidemiological studies; however, it highlighted instances of possible underdiagnosis for LGMD2B and 2L. CONCLUSION: The increasing size of aggregated population variant databases will allow for robust and reproducible prevalence estimates of recessive disease, which is critical for the strategic design and prioritization of clinical trials.


Subject(s)
Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Bayes Theorem , Chromosome Mapping , Databases, Genetic , Exome , Female , Humans , Male , Mutation , Prevalence
11.
Hum Mutat ; 40(7): 893-898, 2019 07.
Article in English | MEDLINE | ID: mdl-30981218

ABSTRACT

Leigh syndrome is a mitochondrial disease caused by pathogenic variants in over 85 genes. Whole exome sequencing of a patient with Leigh-like syndrome identified homozygous protein-truncating variants in two genes associated with Leigh syndrome; a reported pathogenic variant in PDHX (NP_003468.2:p.(Arg446*)), and an uncharacterized variant in complex I (CI) assembly factor TIMMDC1 (NP_057673.2:p.(Arg225*)). The TIMMDC1 variant was predicted to truncate 61 amino acids at the C-terminus and functional studies demonstrated a hypomorphic impact of the variant on CI assembly. However, the mutant protein could still rescue CI assembly in TIMMDC1 knockout cells and the patient's clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Our data suggest that the hypomorphic effect of the TIMMDC1 protein-truncating variant does not constitute a dual diagnosis in this individual. We recommend cautious assessment of variants in the C-terminus of TIMMDC1 and emphasize the need to consider the caveats detailed within the American College of Medical Genetics and Genomics (ACMG) criteria when assessing variants.


Subject(s)
Leigh Disease/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Sequence Deletion , Early Diagnosis , Gene Knockout Techniques , HEK293 Cells , Homozygote , Humans , Mitochondrial Precursor Protein Import Complex Proteins , Pyruvate Dehydrogenase Complex/genetics , Exome Sequencing
12.
Ann Clin Transl Neurol ; 6(3): 515-524, 2019 03.
Article in English | MEDLINE | ID: mdl-30911575

ABSTRACT

Objectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in MTFMT. Methods: Retrospective cohort study combining new cases and previously published cases. Results: Thirty-eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty-nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy-four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation: Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.


Subject(s)
Genomic Structural Variation/genetics , Hydroxymethyl and Formyl Transferases/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Adolescent , Biopsy , Child , Child, Preschool , Cohort Studies , Female , Fibroblasts/metabolism , Humans , Infant , Infant, Newborn , Male , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins , Mutation , Prognosis , Retrospective Studies
14.
Am J Hum Genet ; 101(2): 239-254, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777931

ABSTRACT

The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.


Subject(s)
DNA, Mitochondrial/genetics , Leigh Disease/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Exome/genetics , Female , Humans , Infant , Leigh Disease/enzymology , Male , Mitochondria/genetics , Oxidative Phosphorylation , Proteomics , RNA Splicing/genetics , Sequence Analysis, DNA
15.
Eur Heart J ; 38(48): 3579-3587, 2017 12 21.
Article in English | MEDLINE | ID: mdl-28655204

ABSTRACT

Aims: The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results: Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion: We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Atherosclerosis/genetics , Carrier Proteins/genetics , Cholesterol, HDL/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/genetics , ATP Binding Cassette Transporter 1/biosynthesis , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Carrier Proteins/biosynthesis , Cell Line , Cholesterol/metabolism , Disease Models, Animal , Humans , Intracellular Signaling Peptides and Proteins , Macrophages/metabolism , Mice, Knockout , Nerve Tissue Proteins/biosynthesis , RNA/genetics
16.
Brain ; 140(6): 1595-1610, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28549128

ABSTRACT

Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.


Subject(s)
Adenosine Triphosphatases/genetics , Cerebellum/abnormalities , DNA, Mitochondrial/genetics , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Nervous System Malformations/genetics , ATPases Associated with Diverse Cellular Activities , Adult , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Consanguinity , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Humans , Infant , Infant, Newborn , Male , Mitochondrial Diseases/diagnostic imaging , Mitochondrial Diseases/physiopathology , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/physiopathology
17.
JIMD Rep ; 32: 117-124, 2017.
Article in English | MEDLINE | ID: mdl-27344648

ABSTRACT

Leigh syndrome is a subacute necrotising encephalomyopathy proven by post-mortem analysis of brain tissue showing spongiform lesions with vacuolation of the neuropil followed by demyelination, gliosis and capillary proliferation caused by mutations in one of over 75 different genes, including nuclear- and mitochondrial-encoded genes, most of which are associated with mitochondrial respiratory chain function. In this study, we report a patient with suspected Leigh syndrome presenting with seizures, ptosis, scoliosis, dystonia, symmetrical putaminal abnormalities and a lactate peak on brain MRS, but showing normal MRC enzymology in muscle and liver, thereby complicating the diagnosis. Whole exome sequencing uncovered compound heterozygous mutations in NADH dehydrogenase (ubiquinone) flavoprotein 1 gene (NDUFV1), c.1162+4A>C (NM_007103.3), resulting in skipping of exon 8, and c.640G>A, causing the amino acid substitution p.Glu214Lys, both of which have previously been reported in a patient with complex I deficiency. Patient fibroblasts showed a significant reduction in NDUFV1 protein expression, decreased complex CI and complex IV assembly and consequential reductions in the enzymatic activities of both complexes by 38% and 67%, respectively. The pathogenic effect of these variations was further confirmed by immunoblot analysis of subunits for MRC enzyme complexes in patient muscle, liver and fibroblast where we observed 90%, 60% and 95% reduction in complex CI, respectively. Together these studies highlight the importance of a comprehensive, multipronged approach to the laboratory evaluation of patients with suspected Leigh syndrome.

18.
Ann Neurol ; 79(2): 190-203, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26506407

ABSTRACT

Leigh syndrome is the most common pediatric presentation of mitochondrial disease. This neurodegenerative disorder is genetically heterogeneous, and to date pathogenic mutations in >75 genes have been identified, encoded by 2 genomes (mitochondrial and nuclear). More than one-third of these disease genes have been characterized in the past 5 years alone, reflecting the significant advances made in understanding its etiological basis. We review the diverse biochemical and genetic etiology of Leigh syndrome and associated clinical, neuroradiological, and metabolic features that can provide clues for diagnosis. We discuss the emergence of genotype-phenotype correlations, insights gleaned into the molecular basis of disease, and available therapeutic options.


Subject(s)
Leigh Disease/genetics , Animals , Humans , Leigh Disease/pathology , Leigh Disease/physiopathology
19.
J Neuropathol Exp Neurol ; 74(6): 482-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25978847

ABSTRACT

Leigh syndrome (LS) is the most common pediatric presentation of a defined mitochondrial disease. This progressive encephalopathy is characterized pathologically by the development of bilateral symmetrical lesions in the brainstem and basal ganglia that show gliosis, vacuolation, capillary proliferation, relative neuronal preservation, and by hyperlacticacidemia in the blood and/or cerebrospinal fluid. Understanding the molecular mechanisms underlying this unique pathology has been challenging, particularly in view of the heterogeneous and not yet fully determined genetic basis of LS. Moreover, animal models that mimic features of LS have only been created relatively recently. Here, we review the pathology of LS and consider what might be the molecular mechanisms underlying its pathogenesis. Data from a wide range of sources, including patient samples, animal models, and studies of hypoxic-ischemic encephalopathy (a condition that shares features with LS), were used to provide insight into the pathogenic mechanisms that may drive lesion development. Based on current data, we suggest that severe ATP depletion, gliosis, hyperlacticacidemia, reactive oxygen species, and potentially excitotoxicity cumulatively contribute to the neuropathogenesis of LS. An intimate understanding of the molecular mechanisms causing LS is required to accelerate the development of LS treatments.


Subject(s)
Brain/pathology , Leigh Disease/genetics , Leigh Disease/pathology , Adenosine Triphosphate/deficiency , Animals , Electron Transport Complex I , Humans , Leigh Disease/etiology , Mutation/genetics , NADH Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...