Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 34(50)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37722366

ABSTRACT

Reliable and controllable growth of two-dimensional (2D) hexagonal boron nitride (h-BN) is essential for its wide range of applications. Substrate engineering is one of the critical factors that influence the growth of the epitaxial h-BN films. Here, we report the growth of monolayer h-BN on Ni (111) substrates incorporated with oxygen atoms via molecular beam epitaxy. It was found that the increase of incorporated oxygen concentration in the Ni substrate through a pretreatment process prior to the h-BN growth step would have an adverse effect on the morphology and growth rate of 2D h-BN. Under the same growth condition, h-BN monolayer coverage decreases exponentially as the amount of oxygen incorporated into Ni (111) increases. Density functional theory calculations and climbing image nudged elastic band (CI-NEB) method reveal that the substitutional oxygen atoms can increase the diffusion energy barrier of B and N atoms on Ni (111) thereby inhibiting the growth of h-BN films. As-grown large-area h-BN monolayer films and fabricated Al/h-BN/Ni (MIM) nanodevices were comprehensively characterized to evaluate the structural, optical and electrical properties of high-quality monolayers. Direct tunneling mechanism and high breakdown strength of ∼11.2 MV cm-1are demonstrated for the h-BN monolayers grown on oxygen-incorporated Ni (111) substrates, indicating that these films have high quality. This study provides a unique example that heterogeneous catalysis principles can be applied to the epitaxy of 2D crystals in solid state field. Similar strategies can be used to grow other 2D crystalline materials, and are expected to facilitate the development of next generation devices based on 2D crystals.

2.
Nat Commun ; 14(1): 3222, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270579

ABSTRACT

Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.

3.
Nano Lett ; 22(14): 5751-5758, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35787025

ABSTRACT

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand" through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.

4.
Nanoscale ; 14(16): 6133-6143, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388816

ABSTRACT

We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3-δ nanoribbons exfoliated onto gold substrates. At a selenium deficiency of δ ∼ 0.25 (Se/Ta = 2.75), the nanoribbons exhibit a strong, broad PL peak centered around ∼920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785 nm (1.58 eV) laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency (Se/Ta = 2.85, δ ∼ 0.15) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe3. The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic band structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that substitution of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted band gap is substantially smaller than that derived from the PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems.

5.
ACS Appl Mater Interfaces ; 12(34): 38744-38750, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32805977

ABSTRACT

The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor-insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor-insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.

6.
ACS Appl Mater Interfaces ; 12(31): 35318-35327, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32635717

ABSTRACT

Two-dimensional (2D) hexagonal boron nitride (h-BN) plays a significant role in nanoscale electrical and optical devices because of its superior properties. However, the difficulties in the controllable growth of high-quality films hinder its applications. One of the crucial factors that influence the quality of the films obtained via epitaxy is the substrate property. Here, we report a study of 2D h-BN growth on carburized Ni substrates using molecular beam epitaxy. It was found that the carburization of Ni substrates with different surface orientations leads to different kinetics of h-BN growth. While the carburization of Ni(100) enhances the h-BN growth, the speed of the h-BN growth on carburized Ni(111) reduces. As-grown continuous single-layer h-BN films are used to fabricate Ni/h-BN/Ni metal-insulator-metal (MIM) devices, which demonstrate a high breakdown electric field of 12.9 MV/cm.

7.
Nanotechnology ; 31(30): 30LT01, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32240999

ABSTRACT

We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale 'pillar with the hat' periodic silicon structures, revealing intriguing phononic and photonic-phoxonic-properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals. The shape of the nanoscale pillar array was engineered to ensure the interplay of both effects. The Brillouin-Mandelstam spectroscopy data indicated strong flattening of the acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon wave vector extending to the higher-order Brillouin zones. The specifics of the phonon dispersion dependence on the pillar arrays' orientation suggest the presence of both periodic modulation and spatial localization effects for the acoustic phonons. The ellipsometry data reveal a distinct scatter pattern of four-fold symmetry due to nanoscale periodicity of the pillar arrays. Our results confirm the dual functionality of the nanostructured shape-engineered structure and indicate a possible new direction for fine-tuning the light-matter interaction in the next generation of photonic, optoelectronic, and phononic devices.

8.
J Phys Chem Lett ; 11(4): 1589-1593, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32037830

ABSTRACT

The coordination mechanism of chloroaluminate species in aluminum chloride (AlCl3) solutions in γ-butyrolactone (GBL) is investigated using electrochemical, spectroscopic, and computational methods. The liquid-state 27Al NMR spectroscopy shows a sequence of new species generated in the AlCl3-GBL solutions with increasing AlCl3/GBL ratio. Ab initio molecular dynamics simulation reveals the dynamic coordination process between GBL and AlCl3, and the resultant chloroaluminate species are identified as [AlCl2·(GBL)2]+, AlCl4-, AlCl3·GBL, and Al3Cl10-. The species are further confirmed by surface enhanced Raman spectroscopy combined with calculated Raman spectra from methods based on density functional theory. Electrochemical deposition of Al is achieved from the AlCl3-GBL solution containing Al3Cl10-, which is one of the few noneutectic electrolytes for room-temperature Al deposition reported to date.

9.
ACS Nano ; 14(2): 2424-2435, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31951116

ABSTRACT

We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. Raman spectroscopy was conducted using three different excitation lasers with wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). UV-Raman spectroscopy reveals spectral features which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 ± 0.32 W m-1 K-1 at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 are 0.85 ± 0.15 and 2.7 ± 0.3 W m-1 K-1, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 ± 0.2 W m-1 K-1 through-plane and 6.3 ± 1.7 W m-1 K-1 in-plane. The data obtained by the two techniques are in agreement and reveal strong thermal anisotropy of the films and the dominance of phonon contribution to heat conduction. The obtained results are important for the interpretation of electric switching experiments with antiferromagnetic materials as well as for the proposed applications of the antiferromagnetic semiconductors in spintronic devices.

10.
Phys Rev Lett ; 125(24): 246401, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412071

ABSTRACT

The tight-binding model has been spectacularly successful in elucidating the electronic and optical properties of a vast number of materials. Within the tight-binding model, the hopping parameters that determine much of the band structure are often taken as constants. Here, using ABA-stacked trilayer graphene as the model system, we show that, contrary to conventional wisdom, the hopping parameters and therefore band structures are not constants, but are systematically variable depending on their relative alignment angle between h-BN. Moreover, the addition or removal of the h-BN substrate results in an inversion of the K and K^{'} valley in trilayer graphene's lowest Landau level. Our work illustrates the oft-ignored and rather surprising impact of the substrates on band structures of 2D materials.

11.
ACS Nano ; 13(6): 7231-7240, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31173685

ABSTRACT

We report on switching among three charge-density-wave phases, commensurate, nearly commensurate, incommensurate, and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane bias voltage. The switching among all phases has been achieved over a wide temperature range, from 77 to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 to 600 K. Analysis of the experimental data and calculations of heat dissipation indicate that Joule heating plays a dominant role in the voltage induced transitions in the 1T-TaS2 devices on Si/SiO2 substrates, contrary to some recent claims. The possibility of the bias-voltage switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in the materials.

12.
Proc Natl Acad Sci U S A ; 116(21): 10286-10290, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31053618

ABSTRACT

The quantum Hall effect has recently been generalized from transport of conserved charges to include transport of other approximately conserved-state variables, including spin and valley, via spin- or valley-polarized boundary states with different chiralities. Here, we report a class of quantum Hall effect in Bernal- or ABA-stacked trilayer graphene (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the system's mirror reflection symmetry. At the charge neutrality point, the longitudinal conductance [Formula: see text] is first quantized to [Formula: see text] at a small perpendicular magnetic field [Formula: see text], establishing the presence of four edge channels. As [Formula: see text] increases, [Formula: see text] first decreases to [Formula: see text], indicating spin-polarized counterpropagating edge states, and then, to approximately zero. These behaviors arise from level crossings between even- and odd-parity bulk Landau levels driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong [Formula: see text] limit and a spin-polarized state at intermediate fields. The transitions between spin-polarized and -unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions.

13.
Phys Rev Lett ; 122(10): 106602, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30932676

ABSTRACT

We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k·p model is constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be 25%-31% for an ideal thin film with a single antiferromagnetic domain.

14.
Sci Adv ; 5(4): eaau8170, 2019 04.
Article in English | MEDLINE | ID: mdl-31032402

ABSTRACT

Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices and their implementations in circuits are exploited. Here, we describe a general-purpose spiking neuromorphic system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs) that exhibit many different states with persistence over the lifetime of the device. The research includes micromagnetic and SPICE modeling of the MAM, CMOS neuromorphic analog circuit design of synapses incorporating the MAM, and the design of hybrid CMOS/MAM spiking neuronal networks in which the MAM provides variable synapse strength with persistence. Using this neuronal neuromorphic system, simulations show that the MAM-boosted neuromorphic system can achieve persistence, can demonstrate deterministic fast on-the-fly learning with the potential for reduced circuitry complexity, and can provide increased capabilities over an all-CMOS implementation.


Subject(s)
Brain/physiology , Cognition , Learning , Magnetic Phenomena , Models, Neurological , Algorithms , Computer Simulation , Neural Networks, Computer , Neuronal Plasticity , Synapses/metabolism
15.
ACS Appl Mater Interfaces ; 10(43): 37555-37565, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30299919

ABSTRACT

We investigated thermal properties of the epoxy-based composites with the high loading fraction-up to f ≈ 45 vol %-of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction fT > 20 vol %. The graphene loading required for achieving thermal percolation, fT, was substantially higher than the loading, fE, for electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with high filler loadings, f ≥ fT, is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-two-dimensional fillers. The obtained results shed light on the debated mechanism of the thermal percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications.

16.
Phys Rev Lett ; 121(9): 096802, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230908

ABSTRACT

Magnetism in topological insulators (TIs) opens a topologically nontrivial exchange band gap, providing an exciting platform for manipulating the topological order through an external magnetic field. Here, we show that the surface of an antiferromagnetic thin film can magnetize the top and the bottom TI surface states through interfacial couplings. During the magnetization reversal, intermediate spin configurations are ascribed from unsynchronized magnetic switchings. This unsynchronized switching develops antisymmetric magnetoresistance spikes during magnetization reversals, which might originate from a series of topological transitions. With the high Néel ordering temperature provided by the antiferromagnetic layers, the signature of the induced topological transition persists up to ∼90 K.

17.
Nat Commun ; 9(1): 3612, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190509

ABSTRACT

Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low Gilbert damping and the absence of Ohmic loss. Spin-orbit torques (SOTs) on MIs are more intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how SOTs scale with the MI film thickness. Here, we observe the critical role of dimensionality on the SOT efficiency by studying the MI layer thickness-dependent SOT efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We show that the TmIG thin film evolves from two-dimensional to three-dimensional magnetic phase transitions as the thickness increases. We report the significant enhancement of the measured SOT efficiency as the TmIG thickness increases, which is attributed to the increase of the magnetic moment density. We demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up to 15 nm.

18.
Nat Commun ; 9(1): 2767, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018306

ABSTRACT

Geometric Hall effect is induced by the emergent gauge field experienced by the carriers adiabatically passing through certain real-space topological spin textures, which is a probe to non-trivial spin textures, such as magnetic skyrmions. We report experimental indications of spin-texture topological charges induced in heterostructures of a topological insulator (Bi,Sb)2Te3 coupled to an antiferromagnet MnTe. Through a seeding effect, the pinned spins at the interface leads to a tunable modification of the averaged real-space topological charge. This effect experimentally manifests as a modification of the field-dependent geometric Hall effect when the system is field-cooled along different directions. This heterostructure represents a platform for manipulating magnetic topological transitions using antiferromagnetic order.

19.
Nano Lett ; 18(2): 682-688, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29300487

ABSTRACT

Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.

20.
Nat Nanotechnol ; 12(12): 1134-1139, 2017 12.
Article in English | MEDLINE | ID: mdl-28991242

ABSTRACT

Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...