Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Curr Diabetes Rev ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303524

ABSTRACT

BACKGROUND: The global incidence of type 2 diabetes (T2D) persists at epidemic proportions. Early diagnosis and/or preventive efforts are critical to attenuate the multi-systemic clinical manifestation and consequent healthcare burden. Despite enormous strides in the understanding of pathophysiology and on-going therapeutic development, effectiveness and access are persistent limitations. Among the greatest challenges, the extensive research efforts have not promulgated reliable predictive biomarkers for early detection and risk assessment. The emerging fields of multi-omics combined with machine learning (ML) and augmented intelligence (AI) have profoundly impacted the capacity for predictive, preventive, and personalized medicine. OBJECTIVE: This paper explores the current challenges associated with the identification of predictive biomarkers for T2D and discusses potential actionable solutions for biomarker identification and validation. METHODS: The articles included were collected from PubMed queries. The selected topics of inquiry represented a wide range of themes in diabetes biomarker prediction and prognosis. RESULTS: The current criteria and cutoffs for T2D diagnosis are not optimal nor consider a myriad of contributing factors in terms of early detection. There is an opportunity to leverage AI and ML to significantly enhance the understanding of the underlying mechanisms of the disease and identify prognostic biomarkers. The innovative technologies being developed by GATC are expected to play a crucial role in this pursuit via algorithm training and validation, enabling comprehensive and in-depth analysis of complex biological systems. CONCLUSION: GATC is an emerging leader guiding the establishment of a systems approach towards research and predictive, personalized medicine. The integration of these technologies with clinical data can contribute to a more comprehensive understanding of T2D, paving the way for precision medicine approaches and improved patient outcomes.

2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958696

ABSTRACT

The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications cause at a younger age. This propels the constant search for better diagnostic, treatment, and management strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular interest are (a) their regenerative capacity, which depends on their "origin", and (b) their "content", which determines the cell communication and crosstalk they influence. Other functional capacities, including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in insulin secretory defects or ß-cell death under normal metabolic conditions, immunomodulation, and promotion of regeneration, have also garnered significant interest. Exosome "specificity" makes them suitable as biomarkers or predictors, and their "mobility" and "content" lend credence to drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of exosomes and their established as well as novel contributions at various pathways in the onset and progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting pancreatic ß-cells and immune cells, which is partially mediated by exosomes. We also examine the potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The collective landscape presented is expected to help identify how a deeper understanding of exosomes (and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the very course of T1D and its complications.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Exosomes , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Exosomes/metabolism , Insulin/metabolism , Biomarkers/metabolism
3.
Obes Rev ; 24(12): e13625, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37580916

ABSTRACT

Insulin is secreted in pulses from pancreatic beta-cells, and these oscillations maintain fasting plasma glucose levels within a narrow normal range. Within islets, beta-cells exhibit tight synchronization of regular oscillations. This control circuit is disrupted in type 2 diabetes, and irregularities in pulse frequency and amplitude occur. The prevalence of type 2 diabetes is three times higher in American Indian and Native Alaskans compared to Whites, and their genetic ancestry is associated with low beta-cell function. Obesity in this population compounds their vulnerability to adverse outcomes. The purpose of this article is to review insulin secretion and action and its interaction with race. We also present the results from a 6-month retrospective chart review of metabolic outcomes following intravenous physiologic hormone administration to 10 Native Americans. We found reductions in hemoglobin A1C (baseline: 9.03% ± 2.08%, 6 months: 7.03% ± 0.73%, p = 0.008), fasting glucose (baseline: 176.0 ± 42.85 mg/dL, 6 months: 137.11 ± 17.05 mg/dL, p = 0.02), homeostatic model assessment of insulin resistance (baseline: 10.39 ± 4.66, 6 months: 7.74 ± 4.22, p = 0.008), and triglycerides (baseline: 212.20 ± 101.44, 6 months: 165.50 ± 76.48 mg/dL, p = 0.02). Physiologic hormone administration may improve components of the metabolic syndrome. The therapy warrants investigation in randomized controlled trials.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Glycated Hemoglobin , Retrospective Studies , American Indian or Alaska Native , Insulin Secretion , Insulin/metabolism , Blood Glucose/metabolism
4.
Animals (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570266

ABSTRACT

Stem cell therapy is an attractive treatment for diseases in companion animals that cannot be treated by conventional veterinary medicine practices. The unique properties of stem cells, particularly the ability to differentiate into specific cell types, makes them a focal point in regenerative medicine treatments. Stem cell transplantation, especially using mesenchymal stem cells, has been proposed as a means to treat a wide range of injuries and ailments, resulting in tissue regeneration or repair. This review aims to summarize the veterinary use of stem cells for treating age-related and joint diseases, which are common conditions in pets. While additional research is necessary and certain limitations exist, the potential of stem cell therapy for companion animals is immense.

5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446104

ABSTRACT

Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, ß cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, ß-cell mass is reduced due to apoptosis and ß cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin/metabolism , Ligands , Diabetes Mellitus, Type 2/metabolism , Insulin, Regular, Human , Blood Glucose/metabolism
6.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904554

ABSTRACT

Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.

7.
Transplant Direct ; 9(1): e1417, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36591328

ABSTRACT

Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods: In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ε-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice' and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results: In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions: To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs.

8.
Med Sci Monit ; 29: e938979, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36659834

ABSTRACT

BACKGROUND Bone marrow stem cells have been shown to be a promising therapeutic strategy for autoimmune diseases. This study aimed to assess the safety and efficacy of autologous hematopoietic stem cell (ABMSC) transplantation without immunoablation used to suppress the autoimmune reaction in 6 children with newly diagnosed autoimmune diabetes mellitus. We monitored the levels of islet cell antibodies (ICA), antibodies against islet antigen-related tyrosine phosphatase 2 (IA2), glutamic acid-decarboxylase (GAD) antibodies, and anti-insulin antibodies (AIA). MATERIAL AND METHODS Between 2018 and 2022, 6 children (age 6-10 years, average 8 years) recently diagnosed with type 1 diabetes mellitus with the presence of ICA, IA2, GAD, AIA and ketoacidosis, were treated with an ABMSC stimulated with Filgrastim, granulocyte colony-stimulating factor (G-CSF), 10 ug/kg/day for 4 days. Bone marrow was harvested on day 5, collected by puncture and identified as mononuclear cells >180×106/kg, CD34+ >0.22%, and transplanted by intravenous (i.v.) infusion. Patients were monitored with ICA, IA2, GAD, AIA, C-peptide, blood glucose, and glycosylated hemoglobin A1c (HbA1C) 6 months after the procedure. RESULTS At 6-month follow-up, we observed a negative value of the ICA, which was previously positive (P<0.001). The IA2 (p=0.037) and GAD (P=0.377) antibodies decreased slowly but were significantly lower. AIA remained high. A decrease in blood glucose and HbA1C levels was observed (P<0.001). No complications occurred during follow-up. CONCLUSIONS Autologous hematopoietic stem cell transplantation without immunoablation was safe and effective in significantly decreasing the production and effect of autoantibodies against ICA, GAD, and IA2, as well as decreasing blood sugar levels and HbA1c.


Subject(s)
Diabetes Mellitus, Type 1 , Hematopoietic Stem Cell Transplantation , Islets of Langerhans , Humans , Child , Autoantibodies , Glycated Hemoglobin , Blood Glucose , Glutamate Decarboxylase
9.
Antioxidants (Basel) ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35739935

ABSTRACT

Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic ß cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.

10.
Acta Biomater ; 146: 434-449, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35500812

ABSTRACT

Immunoisolation of pancreatic islets in alginate-based microcapsules is a promising approach for grafting of islets in absence of immunosuppression. However, loss and damage to the extracellular matrix (ECM) during islet isolation enhance susceptibility of islets for inflammatory stress. In this study, a combined strategy was applied to reduce this stress by incorporating ECM components (collagen type IV/RGD) and necroptosis inhibitor, necrostatin-1 (Nec-1) in alginate-based microcapsules in vitro. To demonstrate efficacy, viability and function of MIN6 ß-cells and human islets in capsules with collagen type IV/RGD and/or Nec-1 was investigated in presence and absence of IL-1ß, IFN-γ and TNF-α. The combination of collagen type IV/RGD and Nec-1 had higher protective effects than the molecules alone. Presence of collagen type IV/RGD and Nec-1 in the intracapsular environment reduced cytokine-induced overproduction of free radical species and unfavorable shifts in mitochondrial dynamics. In addition, the ECM components collagen type IV/RGD prevented a cytokine induced suppression of the FAK/Akt pathway. Our data indicate that the inclusion of collagen type IV/RGD and Nec-1 in the intracapsular environment prevents islet-cell loss when exposed to inflammatory stress, which might contribute to higher survival of ß-cells in the immediate period after transplantation. This approach of inclusion of stress reducing agents in the intracapsular environment of immunoisolating devices may be an effective way to enhance the longevity of encapsulated islet grafts. STATEMENT OF SIGNIFICANCE: Islet-cells in immunoisolated alginate-based microcapsules are very susceptible to inflammatory stress which impacts long-term survival of islet grafts. Here we show that incorporation of ECM components (collagen type IV/RGD) and necrostatin-1 (Nec-1) in the intracapsular environment of alginate-based capsules attenuates this susceptibility and promotes islet-cell survival. This effect induced by collagen type IV/RGD and Nec-1 was probably due to lowering free radical production, preventing mitochondrial dysfunction and by maintaining ECM/integrin/FAK/Akt signaling and Nec-1/RIP1/RIP3 signaling. Our study provides an effective strategy to extend longevity of islet grafts which might be of great potential for future clinical application of immunoisolated cells.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Alginates/pharmacology , Capsules , Collagen Type IV/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Humans , Imidazoles , Indoles , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Oligopeptides/metabolism , Oligopeptides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
11.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163806

ABSTRACT

Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5% in 2018. This creates a major public health problem, due to increases in long-term complications of diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atherosclerotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes. Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout. This triggers a cascade leading to islet cell destruction and the long-term complications of type 2 diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become irregular. This has been treated by the precise administration of insulin more physiologically. There is consistent evidence that this treatment modality can reverse the diabetes-associated complications of neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion, physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential, and likely cost benefits.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Insulin Resistance , Insulin, Regular, Human/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Glycated Hemoglobin/metabolism , Humans , Insulin Secretion/drug effects , Insulin, Regular, Human/pharmacology , Pancreas/drug effects , Pancreas/metabolism
12.
Tissue Eng Part B Rev ; 28(1): 129-140, 2022 02.
Article in English | MEDLINE | ID: mdl-33397201

ABSTRACT

Islet transplantation is a promising therapy for insulin-dependent diabetes, but large-scale application is hampered by the lack of a consistent source of insulin-producing cells and need for lifelong administration of immunosuppressive drugs, which are associated with severe side effects. To avoid chronic immunosuppression, islet grafts can be enveloped in immunoisolating polymeric membranes. These immunoisolating polymeric membranes protect islet grafts from cell-mediated rejection while allowing diffusion of oxygen, nutrients, and insulin. Although clinical trials have shown the safety and feasibility of encapsulated islets to control glucose homeostasis, the strategy does up till now not support long-term graft survival. This partly can be explained by a significant loss of insulin-producing cells in the immediate period after implantation. The loss can be prevented by combining immunoisolation with immunomodulation, such as combined administration of immunomodulating cytokines or coencapsulation of immunomodulating cell types such as regulatory T cells, mesenchymal stem cells, or Sertoli cells. Also, administration of specific antibodies or apoptotic donor leucocytes is considered to create a tolerant microenvironment around immunoisolated grafts. In this review, we describe the outcomes and limitations of these approaches, as well as the recent progress in immunoisolating devices. Impact statement Immunoisolation by enveloping islets in semipermeable membranes allows for successful transplantation of islet grafts in the absence of chronic immunosuppression, but the duration of graft survival is still not permanent. The reasons for long-term final graft failure is not fully understood, but combining immunoisolation with immunomodulation of tissues or host immune system has been proposed to enhance the longevity of grafts. This article reviews the recent progress and challenges of immunoisolation, as well as the benefits and feasibility of combining encapsulation approaches with immunomodulation to promote longevity of encapsulated grafts.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Diabetes Mellitus, Type 1/therapy , Graft Survival , Humans , Immunomodulation , Male
13.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638521

ABSTRACT

Recent studies have demonstrated the feasibility of islet implantation into the alveoli. However, until today, there are no data on islet behavior and morphology at their transplant site. This study is the first to investigate islet distribution as well insulin production at the implant site. Using an ex vivo postmortem swine model, porcine pancreatic islets were isolated and aerosolized into the lung using an endoscopic spray-catheter. Lung tissue was explanted and bronchial airways were surgically isolated and connected to a perfusor. Correct implantation was confirmed via histology. The purpose of using this new lung perfusion model was to measure static as well as dynamic insulin excretions following glucose stimulation. Alveolar islet implantation was confirmed after aerosolization. Over 82% of islets were correctly implanted into the intra-alveolar space. The medium contact area to the alveolar surface was estimated at 60 +/- 3% of the total islet surface. The new constructed lung perfusion model was technically feasible. Following static glucose stimulation, insulin secretion was detected, and dynamic glucose stimulation revealed a biphasic insulin secretion capacity during perfusion. Our data indicate that islets secrete insulin following implantation into the alveoli and display an adapted response to dynamic changes in glucose. These preliminary results are encouraging and mark a first step toward endoscopically assisted islet implantation in the lung.


Subject(s)
Insulin Secretion/physiology , Insulin/biosynthesis , Islets of Langerhans Transplantation/methods , Islets of Langerhans/metabolism , Pulmonary Alveoli/surgery , Administration, Inhalation , Aerosols/administration & dosage , Animals , Blood Glucose/analysis , Diabetes Mellitus, Type 1/therapy , Glucose/administration & dosage , Glucose/metabolism , Swine
14.
Islets ; 13(5-6): 115-120, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34402725

ABSTRACT

Pancreatic islet transplantation to restore insulin production in Type 1 Diabetes Mellitus patients is commonly performed by infusion of islets into the hepatic portal system. However, the risk of portal vein thrombosis or elevation of portal pressure after transplantation introduces challenges to this procedure. Thus, alternative sites have been investigated, among which the omentum represents an ideal candidate. The surgical site is easily accessible, and the tissue is highly vascularized with a large surface area for metabolic exchange. Furthermore, the ability of the omentum to host large volumes of islets represents an intriguing if not ideal site for encapsulated islet transplantation. Research on the safety and efficacy of the omentum as a transplant site focuses on the utilization of biologic scaffolds or encapsulation of islets in a biocompatible semi-permeable membrane. Currently, more clinical trials are required to better characterize the safety and efficacy of islet transplantation into the omentum.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Diabetes Mellitus, Type 1/surgery , Humans , Insulin , Omentum/surgery
15.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445075

ABSTRACT

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8-15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Imidazoles/pharmacology , Indoles/pharmacology , Islets of Langerhans Transplantation/methods , Islets of Langerhans/drug effects , Tissue Culture Techniques/methods , Animals , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Islets of Langerhans/physiology , Mice, Nude , Swine , Transplantation, Heterologous/methods , Transplants/drug effects , Transplants/physiology
16.
Commun Biol ; 4(1): 685, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083739

ABSTRACT

Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 1/surgery , Exosomes/immunology , Immunity/immunology , Immunologic Factors/immunology , Islets of Langerhans Transplantation/methods , Animals , Cells, Cultured , Coculture Techniques , Cytokines/immunology , Cytokines/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/immunology , Exosomes/metabolism , Humans , Immunocompromised Host/immunology , Immunologic Factors/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Rats , Spleen/cytology , Spleen/immunology , Spleen/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Heterologous
17.
Xenotransplantation ; 28(4): e12703, 2021 07.
Article in English | MEDLINE | ID: mdl-34176167

ABSTRACT

BACKGROUND: Porcine islet xenotransplantation is a promising treatment for type 1 diabetes as an alternative to human pancreatic islet transplantation and long-term insulin therapy. Several research groups have explored porcine islets as an alternative to the inconsistent and chronic shortage of pancreases from human organ donors. Studies have confirmed successful transplant of porcine islets into non-human primate models of diabetes; however, in most cases, they require more than one adult porcine donor to achieve sufficient viable islet mass for sustained function. The importance of GMP-grade reagents includes the following: specific enzymes utilized in the pancreatic isolation process were identified as a key factor in successful human clinical islet transplantation trials using cadaveric islets. As xenotransplantation clinical research progresses, isolation reagents and digestion enzymes play a key role in the consistency of the product and ultimately the outcome of the islet xenotransplant. In this study, we evaluated several commercially available enzyme blends that have been used for islet isolation. We evaluated their impact on islet isolation yield and subsequent islet function as part of our plan to bring xenotransplantation into clinical xenotransplantation trials. METHODS: Adult porcine islets were isolated from 16 to 17-month-old Yucatan miniature pigs following standard rapid procurement. Pigs weighed on average 48.71 ± 2.85 kg, and the produced pancreases were 39.51 ± 1.80 grams (mean ± SEM). After ductal cannulation, we evaluated both GMP-grade enzymes (Collagenase AF-1 GMP grade and Liberase MTF C/T GMP grade) and compared with standard non-GMP enzyme blend (Collagenase P). Islet quality control assessments including islet yield, islet size (IEQ), membrane integrity (acridine orange/propidium iodide), and functional viability (GSIS) were evaluated in triplicate on day 1 post-islet isolation culture. RESULTS: Islet yield was highest in the group of adult pigs where Collagenase AF-1 GMP grade was utilized. The mean islet yield was 16 586 ± 1391 IEQ/g vs 8302 ± 986 IEQ/g from pancreases isolated using unpurified crude Collagenase P. The mean islet size was higher in Collagenase AF-1 GMP grade with neutral protease than in Collagenase P and Liberase MTF C/T GMP grade. We observed no significant difference between the experimental groups, but in vitro islet function after overnight tissue culture was significantly higher in Collagenase AF-1 GMP grade with neutral protease and Liberase MTF C/T GMP grade than the crude control enzyme group. As expected, the GMP-grade enzyme has significantly lower endotoxin levels than the crude control enzyme group when measured. CONCLUSIONS: This study validates the importance of using specifically blended GMP grade for adult pig islet isolation for xenotransplantation trials and the ability to isolate a sufficient number of viable islets from one adult pig to provide a sufficient number for islets for a clinical islet transplantation. GMP-grade enzymes are highly efficient in increasing islet yield, size, viability, and function at a lower and acceptable endotoxin level. Ongoing research transplants these islets into animal models of diabetes to validate in vivo function. Also, these defined and reproducible techniques using GMP-grade enzymes allow for continuance of our plan to advance to xenotransplantation of isolated pig islets for the treatment of type 1 diabetes.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Cell Separation , Collagenases , Pancreas , Swine , Transplantation, Heterologous
18.
Cell Transplant ; 30: 963689721999617, 2021.
Article in English | MEDLINE | ID: mdl-33757335

ABSTRACT

The origins of low-temperature tissue storage research date back to the late 1800s. Over half a century later, osmotic stress was revealed to be a main contributor to cell death during cryopreservation. Consequently, the addition of cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), or propylene glycol (PG), although toxic to cells at high concentrations, was identified as a necessary step to protect against rampant cell death during cryopreservation. In addition to osmotic stress, cooling and thawing rates were also shown to have significant influence on cell survival during low temperature storage. In general, successful low-temperature cell preservation consists of the addition of a CPA (commonly 10% DMSO), alone or in combination with additional permeating or non-permeating agents, cooling rates of approximately 1ºC/min, and storage in either liquid or vapor phase nitrogen. In addition to general considerations, cell-specific recommendations for hepatocytes, pancreatic islets, sperm, oocytes, and stem cells should be observed to maximize yields. For example, rapid cooling is associated with better cryopreservation outcomes for oocytes, pancreatic islets, and embryonic stem cells while slow cooling is recommended for cryopreservation of hepatocytes, hematopoietic stem cells, and mesenchymal stem cells. Yields can be further maximized by implementing additional pre-cryo steps such as: pre-incubation with glucose and anti-oxidants, alginate encapsulation, and selecting cells within an optimal age range and functional ability. Finally, viability and functional assays are critical steps in determining the quality of the cells post-thaw and improving the efficiency of the current cryopreservation methods.


Subject(s)
Cell Survival/physiology , Cryopreservation/methods , Cryoprotective Agents/therapeutic use , Humans
19.
Xenotransplantation ; 28(3): e12667, 2021 05.
Article in English | MEDLINE | ID: mdl-33438288

ABSTRACT

BACKGROUND: Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS: PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS: Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION: The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.


Subject(s)
Islets of Langerhans , Animals , Imidazoles , Indoles , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Swine , Transplantation, Heterologous
20.
Biomaterials ; 266: 120460, 2021 01.
Article in English | MEDLINE | ID: mdl-33099059

ABSTRACT

Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.


Subject(s)
Diabetes Mellitus, Experimental , Graft Survival , Islets of Langerhans Transplantation , Pectins , Toll-Like Receptor 2 , Alginates , Animals , Capsules , Diabetes Mellitus, Experimental/therapy , Heterografts , Immunity , Mice , Polymers , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...