Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Pharmacol Ther ; 114(5): 1006-1014, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37458709

ABSTRACT

In clinical trials of cannabidiol (CBD) for the treatment of seizures in patients with Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex, elevations in serum alanine aminotransferase (ALT) > 3× the upper limit of normal were observed in some patents, but the incidence was much greater in patients who were receiving treatment with valproate (VPA) before starting CBD. To explore potential mechanisms underlying this interaction, we used DILIsym, a quantitative systems toxicology model, to predict ALT elevations in a simulated human population treated with CBD alone, VPA alone, and when CBD dosing was starting during treatment with VPA. We gathered in vitro data assessing the potential for CBD, the two major CBD metabolites, and VPA to cause hepatotoxicity via inhibition of bile acid transporters, mitochondrial dysfunction, and production of reactive oxygen species (ROS). Physiologically-based pharmacokinetic models for CBD and VPA were used to predict liver exposure. DILIsym simulations predicted dose-dependent ALT elevations from CBD treatment and this was predominantly driven by ROS production from the parent molecule. DILIsym also predicted VPA treatment to cause ALT elevations which were transient when mitochondrial biogenesis was incorporated into the model. Contrary to the clinical experience, simulation of 2 weeks treatment with VPA prior to introduction of CBD treatment did not predict an increase of the incidence of ALT elevations relative to CBD treatment alone. We conclude that the marked increased incidence of CBD-associated ALT elevations in patients already receiving VPA is unlikely to involve the three major mechanisms of direct hepatotoxicity.

2.
Pharmacol Res Perspect ; 7(6): e00523, 2019 12.
Article in English | MEDLINE | ID: mdl-31624633

ABSTRACT

Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/antagonists & inhibitors , Anticonvulsants/toxicity , Chemical and Drug Induced Liver Injury/pathology , Models, Biological , Quinazolines/toxicity , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Administration, Oral , Adolescent , Adult , Animals , Anticonvulsants/administration & dosage , Chemical and Drug Induced Liver Injury/etiology , Computer Simulation , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/standards , Epilepsy/drug therapy , HEK293 Cells , Healthy Volunteers , Hepatocytes , Humans , Inhibitory Concentration 50 , Liver/drug effects , Liver/pathology , Male , Middle Aged , Mitochondria/drug effects , Quinazolines/administration & dosage , Rats , Species Specificity , Taurocholic Acid/metabolism , Young Adult
3.
PLoS One ; 10(11): e0143753, 2015.
Article in English | MEDLINE | ID: mdl-26606145

ABSTRACT

Rho GTPases play important roles in many aspects of cell migration, including polarity establishment and organizing actin cytoskeleton. In particular, the Rho GTPase Rac1 has been associated with the generation of protrusions at leading edge of migrating cells. Previously we showed the mobility of Rac1 molecules is not uniform throughout a migrating cell (Hinde E et. al. PNAS 2013). Specifically, the closer a Rac1 molecule is to the leading edge, the slower the molecule diffuses. Because actin-bound Rac1 diffuses slower than unbound Rac1, we hypothesized that regions of high actin concentration, called "actin islands", act as diffusive traps and are responsible for the non-uniform diffusion observed in vivo. Here, in silico model simulations demonstrate that equally spaced actin islands can regulate the time scale for Rac1 diffusion in a manner consistent with data from live-cell imaging experiments. Additionally, we find this mechanism is robust; different patterns of Rac1 mobility can be achieved by changing the actin islands' positions or their affinity for Rac1.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , rac1 GTP-Binding Protein/metabolism , Algorithms , Biosensing Techniques , Computer Simulation , Intracellular Space/metabolism , Models, Biological , Protein Binding , Protein Transport
4.
PLoS Comput Biol ; 6(4): e1000772, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20442863

ABSTRACT

Polyglutamine (polyQ) expansion in exon1 (XN1) of the huntingtin protein is linked to Huntington's disease. When the number of glutamines exceeds a threshold of approximately 36-40 repeats, XN1 can readily form amyloid aggregates similar to those associated with disease. Many experiments suggest that misfolding of monomeric XN1 plays an important role in the length-dependent aggregation. Elucidating the misfolding of a XN1 monomer can help determine the molecular mechanism of XN1 aggregation and potentially help develop strategies to inhibit XN1 aggregation. The flanking sequences surrounding the polyQ region can play a critical role in determining the structural rearrangement and aggregation mechanism of XN1. Few experiments have studied XN1 in its entirety, with all flanking regions. To obtain structural insights into the misfolding of XN1 toward amyloid aggregation, we perform molecular dynamics simulations on monomeric XN1 with full flanking regions, a variant missing the polyproline regions, which are hypothesized to prevent aggregation, and an isolated polyQ peptide (Q(n)). For each of these three constructs, we study glutamine repeat lengths of 23, 36, 40 and 47. We find that polyQ peptides have a positive correlation between their probability to form a beta-rich misfolded state and their expansion length. We also find that the flanking regions of XN1 affect its probability to form a beta-rich state compared to the isolated polyQ. Particularly, the polyproline regions form polyproline type II helices and decrease the probability of the polyQ region to form a beta-rich state. Additionally, by lengthening polyQ, the first N-terminal 17 residues are more likely to adopt a beta-sheet conformation rather than an alpha-helix conformation. Therefore, our molecular dynamics study provides a structural insight of XN1 misfolding and elucidates the possible role of the flanking sequences in XN1 aggregation.


Subject(s)
Exons , Nerve Tissue Proteins/chemistry , Nuclear Proteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Cluster Analysis , Huntingtin Protein , Huntington Disease/metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...