Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 693: 115595, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909770

ABSTRACT

Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.

2.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065856

ABSTRACT

Recently, the oxidative behavior of methotrexate (MTX) anticancer drug is highly demanded, due to its side effects on healthy cells, despite being a very challenging task. In this study, we have prepared porous NiO material using sodium sulfate as an electronic disorder reagent by hydrothermal method and found it highly sensitive and selective for the oxidation of MTX. The synthesized NiO nanostructures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. These physical characterizations delineated the porous morphology and cubic crystalline phase of NiO. Different electrochemical approaches have been utilized to determine the MTX concentrations in 0.04 M Britton-Robinson buffer (BRB) at pH 2 using glassy carbon electrode (GCE)-modified with electronically disordered NiO nanostructures. The linear range for MTX using cyclic voltammetry (CV) was found to be from 5 to 30 nM, and the limit of detection (LOD) and limit of quantification (LOQ) were 1.46 nM and 4.86 nM, respectively, whereas the linear range obtained via linear sweep voltammetry (LSV) was estimated as 15-90 nM with LOD and LOQ of 0.819 nM and 2.713 nM, respectively. Additionally, amperometric studies revealed a linear range from 10 to70 nM with LOD and LOQ of 0.1 nM and 1.3 nM, respectively. Importantly, MTX was successfully monitored in pharmaceutical products using the standard recovery method. Thus, the proposed approach for the synthesis of active metal oxide materials could be sued for the determination of other anticancer drugs in real samples and other biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...