Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854134

ABSTRACT

Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.

3.
Curr Biol ; 33(18): 3805-3820.e7, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37586372

ABSTRACT

Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.


Subject(s)
Lysosomes , Macular Degeneration , Mice , Animals , Lysosomes/metabolism , Phagocytosis , Retinal Pigment Epithelium/metabolism , TOR Serine-Threonine Kinases/metabolism , Macular Degeneration/metabolism
4.
Front Cell Dev Biol ; 10: 1044672, 2022.
Article in English | MEDLINE | ID: mdl-36393836

ABSTRACT

Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.

5.
Exp Eye Res ; 225: 109254, 2022 12.
Article in English | MEDLINE | ID: mdl-36150544

ABSTRACT

Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Middle Aged , Humans , Aged , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Cellular Senescence
6.
Exp Eye Res ; 222: 109170, 2022 09.
Article in English | MEDLINE | ID: mdl-35835183

ABSTRACT

Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.


Subject(s)
Geographic Atrophy , Induced Pluripotent Stem Cells , Macular Degeneration , Adult , Aged , Animals , Cell Culture Techniques , Geographic Atrophy/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/metabolism , Mice , Retinal Pigment Epithelium/metabolism , Swine
7.
Commun Biol ; 4(1): 454, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846551

ABSTRACT

Nε-lysine acetylation in the ER lumen is a recently discovered quality control mechanism that ensures proteostasis within the secretory pathway. The acetyltransferase reaction is carried out by two type-II membrane proteins, ATase1/NAT8B and ATase2/NAT8. Prior studies have shown that reducing ER acetylation can induce reticulophagy, increase ER turnover, and alleviate proteotoxic states. Here, we report the generation of Atase1-/- and Atase2-/- mice and show that these two ER-based acetyltransferases play different roles in the regulation of reticulophagy and macroautophagy. Importantly, knockout of Atase1 alone results in activation of reticulophagy and rescue of the proteotoxic state associated with Alzheimer's disease. Furthermore, loss of Atase1 or Atase2 results in widespread adaptive changes in the cell acetylome and acetyl-CoA metabolism. Overall, our study supports a divergent role of Atase1 and Atase2 in cellular biology, emphasizing ATase1 as a valid translational target for diseases characterized by toxic protein aggregation in the secretory pathway.


Subject(s)
Acetyl Coenzyme A/metabolism , Acetyltransferases/genetics , Autophagy/genetics , Endoplasmic Reticulum/physiology , Acetyltransferases/metabolism , Animals , Female , Macroautophagy/genetics , Male , Mice , Mice, Knockout
8.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33822768

ABSTRACT

Age-related macular degeneration (AMD) damages the retinal pigment epithelium (RPE), the tissue that safeguards photoreceptor health, leading to irreversible vision loss. Polymorphisms in cholesterol and complement genes are implicated in AMD, yet mechanisms linking risk variants to RPE injury remain unclear. We sought to determine how allelic variants in the apolipoprotein E cholesterol transporter modulate RPE homeostasis and function. Using live-cell imaging, we show that inefficient cholesterol transport by the AMD risk-associated ApoE2 increases RPE ceramide, leading to autophagic defects and complement-mediated mitochondrial damage. Mitochondrial injury drives redox state-sensitive cysteine-mediated phase separation of ApoE2, forming biomolecular condensates that could nucleate drusen. The protective ApoE4 isoform lacks these cysteines and is resistant to phase separation and condensate formation. In Abca-/- Stargardt macular degeneration mice, mitochondrial dysfunction induces liquid-liquid phase separation of p62/SQSTM1, a multifunctional protein that regulates autophagy. Drugs that decrease RPE cholesterol or ceramide prevent mitochondrial injury and phase separation in vitro and in vivo. In AMD donor RPE, mitochondrial fragmentation correlates with ApoE and p62 condensates. Our studies demonstrate that major AMD genetic and biological risk pathways converge upon RPE mitochondria, and identify mitochondrial stress-mediated protein phase separation as an important pathogenic mechanism and promising therapeutic target in AMD.


Subject(s)
Biomolecular Condensates/metabolism , Ceramides/metabolism , Cholesterol/metabolism , Macular Degeneration/metabolism , Mitochondria/metabolism , Retinal Pigment Epithelium/metabolism , Sequestosome-1 Protein/metabolism , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Autophagy/physiology , Biomolecular Condensates/pathology , Complement System Proteins/metabolism , Intravital Microscopy , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Mice, Knockout , Mitochondria/pathology , Oxidative Stress , Retinal Pigment Epithelium/pathology
9.
Redox Biol ; 37: 101781, 2020 10.
Article in English | MEDLINE | ID: mdl-33162377

ABSTRACT

The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.


Subject(s)
Lipid Metabolism , Macular Degeneration , Complement Activation/genetics , Humans , Lipid Metabolism/genetics , Macular Degeneration/genetics , Macular Degeneration/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Retinal Pigment Epithelium/metabolism
10.
Prog Retin Eye Res ; : 100846, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32105772

ABSTRACT

The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.

11.
Mol Cancer Res ; 18(1): 33-45, 2020 01.
Article in English | MEDLINE | ID: mdl-31604847

ABSTRACT

Centrosome amplification (CA), or a numerical increase in centrosomes, is common in human cancers, particularly those with high-risk features. We have discovered that cells with CA have an increased burden of autophagy, a catabolic process whereby autophagosomes engulf damaged organelles and proteins and deliver these contents to the lysosome for degradation and subsequent recycling. Cells with CA demonstrate an accumulation of autophagosomes. We evaluated the alternative hypotheses that CA alters autophagy by modulating microtubule networks and impairing trafficking versus altering lysosome clustering and organization versus chromosome missegregation-induced proteotoxic stress. Using LC3 reporter assays and autophagosome tracking experiments, we demonstrate that CA causes an accumulation of autophagosomes by interfering with autophagosome trafficking. To establish whether this was a druggable weakness, we tested autophagy inhibitors in our cell models of CA. Cells with CA are sensitized to chemical and genetic autophagy inhibition. Taken together, our results suggest that autophagy is disrupted by CA and sensitizes cells to inhibition of autophagy. These findings suggest a novel precision medicine strategy, whereby CA increases reliance on autophagy and serves as a biomarker for autophagy inhibitors in high-risk cancers. IMPLICATIONS: Our study suggests that CA could be used as a predictive biomarker for treatment with autophagy inhibitors.


Subject(s)
Autophagy/genetics , Centrosome/metabolism , Neoplasms/genetics , Humans
12.
Proc Natl Acad Sci U S A ; 115(36): 9014-9019, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30126999

ABSTRACT

Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.


Subject(s)
Complement C3a/metabolism , Endosomes/metabolism , Macular Degeneration/congenital , Retinal Pigment Epithelium/metabolism , TOR Serine-Threonine Kinases/metabolism , ATP-Binding Cassette Transporters/deficiency , Aged , Aged, 80 and over , Animals , Ceramides/genetics , Ceramides/metabolism , Complement C3a/genetics , Disease Models, Animal , Endosomes/genetics , Endosomes/pathology , Female , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Knockout , Retinal Pigment Epithelium/pathology , Stargardt Disease , Swine , TOR Serine-Threonine Kinases/genetics
13.
Adv Exp Med Biol ; 1074: 335-343, 2018.
Article in English | MEDLINE | ID: mdl-29721961

ABSTRACT

Early endosomes are organelles that receive macromolecules and solutes from the extracellular environment. The major function of early endosomes is to sort these cargos into recycling and degradative compartments of the cell. Degradation of the cargo involves maturation of early endosomes into late endosomes, which, after acquisition of hydrolytic enzymes, form lysosomes. Endosome maturation involves recruitment of specific proteins and lipids to the early endosomal membrane, which drives changes in endosome morphology. Defects in early endosome maturation are generally accompanied by alterations in morphology, such as increase in volume and/or number. Enlarged early endosomes have been observed in Alzheimer's disease and Niemann Pick Disease type C, which also exhibit defects in endocytic sorting. This article discusses the mechanisms that regulate early endosome morphology and highlights the potential importance of endosome maturation in the retinal pigment epithelium.


Subject(s)
Endosomes/ultrastructure , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Endocytosis/physiology , Endosomes/physiology , Humans , Macular Degeneration/congenital , Macular Degeneration/metabolism , Macular Degeneration/pathology , Membrane Fusion , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Mice , Microtubules/metabolism , Microtubules/ultrastructure , Models, Biological , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Organelle Biogenesis , Protein Transport/physiology , Stargardt Disease , rab GTP-Binding Proteins/metabolism
14.
Mol Vis ; 23: 60-89, 2017.
Article in English | MEDLINE | ID: mdl-28356702

ABSTRACT

PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Cell Line , Down-Regulation/genetics , Epithelial Cells/metabolism , Gene Ontology , Humans , Melanins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis/genetics , Phenotype , Retinoids/metabolism , Up-Regulation/genetics
15.
Ophthalmol Retina ; 1(6): 461-473, 2017.
Article in English | MEDLINE | ID: mdl-31047436

ABSTRACT

PURPOSE: To describe a subgroup of subjects with soft drusen associated with geographic atrophy (GA) and novel spectral-domain OCT (SD-OCT) findings consistent with presumed drusen leakage. We also propose a mechanism leading to GA progression in these patients. DESIGN: A retrospective, observational cohort study. PARTICIPANTS: Forty-eight eyes of 33 patients with soft drusen secondary to age-related macular degeneration (AMD). METHODS: Drusen were evaluated with SD-OCT and retinal imaging to characterize the development of atrophy-associated drusen regression (drusen collapse) over a follow-up period of ≥18 months. MAIN OUTCOME MEASURES: The presence of isoreflective dots at the outer retinal layers associated with retinal pigment epithelium (RPE) defects. Percentages of previously reported hyperreflective RPE, and hyperreflective dots (HRDs) were also determined. RESULTS: Nineteen of 48 eyes (39.6%) showed a collapse of ≥1 druse during the follow-up period. Thirty-four foci of collapsed drusen were found to be associated with either isoreflective dots associated with RPE defects (32.4%), hyperreflectivity of the RPE (91.2%), or HRDs (79.4%). A post hoc showed the adjusted odds ratio of drusen collapse for isoreflective dots (65.8), for HRDs (6.0) or both (12.1). CONCLUSIONS: In soft drusen progressing to subsequent atrophy, approximately 33% were associated with isoreflective dots and RPE defects. In addition, overlying hyperreflectivity of the RPE and HRDs were noted with high frequency. Presence of isoreflective dots, with or without HRDs, was associated with a strong risk of developing atrophy compared with drusen without these findings. We hypothesize that these isoreflective dots associated with RPE defects may be debris extruded from the soft drusen into the subretinal space, which we have termed "drusen ooze". Drusen ooze may activate the RPE apical surfaces, leading to a marked increase in phagocytosis/endocytosis of extracellular debris that eventually overwhelms the RPE capacity, and leads to RPE death, subsequent release of intracellular RPE material and thereby propagate a cycle of cellular death resulting in GA development and progression. Therapeutic targeting of drusen material, prior to its extrusion into the subretinal space and prior to irreversible damage to the RPE, might prevent or delay onset and progression of GA.

16.
Sci Rep ; 6: 34437, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687975

ABSTRACT

Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model.

17.
Proc Natl Acad Sci U S A ; 113(31): 8789-94, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432952

ABSTRACT

The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations.


Subject(s)
Complement Membrane Attack Complex/metabolism , Complement System Proteins/metabolism , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , CD59 Antigens/metabolism , Calcium/metabolism , Cells, Cultured , Cholesterol/metabolism , Humans , Lysosomes/metabolism , Macular Degeneration/congenital , Macular Degeneration/genetics , Mice, Knockout , Mitochondria/metabolism , Oxidative Stress , Retinal Pigment Epithelium/cytology , Sphingomyelin Phosphodiesterase/metabolism , Stargardt Disease , Swine
18.
Adv Exp Med Biol ; 854: 3-9, 2016.
Article in English | MEDLINE | ID: mdl-26427386

ABSTRACT

The cholesterol transporting protein apolipoprotein E (ApoE) occurs in three allelic variants in humans unlike in other species. The resulting protein isoforms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk for several diseases of aging including atherosclerosis, Alzheimer's disease, and age-related macular degeneration (AMD). A single E4 allele increases the risk of developing Alzheimer's disease, whereas the E2 allele is protective. Intriguingly, the E4 allele is protective in AMD. Current thinking about different functions of ApoE isoforms comes largely from studies on Alzheimer's disease. These data cannot be directly extrapolated to AMD since the primary cells affected in these diseases (neurons vs. retinal pigment epithelium) are so different. Here, we propose that ApoE serves a fundamentally different purpose in regulating cholesterol homeostasis in the retinal pigment epithelium and this could explain why allelic risk factors are flipped for AMD compared to Alzheimer's disease.


Subject(s)
Apolipoprotein E2/metabolism , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Macular Degeneration/metabolism , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Humans , Lipoproteins/metabolism , Macular Degeneration/genetics , Neurons/metabolism , Protein Binding , Receptors, LDL/metabolism , Retinal Pigment Epithelium/metabolism , Risk Factors
19.
Mol Biol Cell ; 26(1): 1-14, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25378587

ABSTRACT

Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.


Subject(s)
Autophagy , Cholesterol/metabolism , Macular Degeneration/physiopathology , Phagosomes/metabolism , Retinal Pigment Epithelium/ultrastructure , Sphingomyelin Phosphodiesterase/metabolism , Animals , Ceramides/metabolism , Humans , Lipofuscin/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Microtubules/metabolism , Monoglycerides/metabolism , Retinoids/pharmacology , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...