Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(28): 5345-5352, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37403928

ABSTRACT

We report an electrode-embedded on-chip platform technology for the precise determination of ultra-short (of the order of a few nanoseconds) relaxation times of dilute polymer solutions, by deploying time-alternating electrical voltages. Our methodology delves into the sensitive dependence of the contact line dynamics of a droplet of the polymer solution atop a hydrophobic interface in response to the actuation voltage, resulting in a non-trivial interplay between the time-evolving electrical, capillary, and viscous forces. This culminates into a time-decaying dynamic response that mimics the features of a damped oscillator having its 'stiffness' mapped with the polymeric content of the droplet. The observed electro-spreading characteristics of the droplet are thus shown to correlate explicitly with the relaxation time of the polymer solution, drawing analogies with a damped electro-mechanical oscillator. By corroborating well with the reported values of the relaxation times as obtained from more elaborate and sophisticated laboratory set-ups. Our findings provide perspectives for a unique and simple approach towards electrically-modulated on-chip-spectroscopy for deriving ultra-short relaxation times of a broad class of viscoelastic fluids that could not be realized thus far.

2.
Ultrason Sonochem ; 73: 105493, 2021 May.
Article in English | MEDLINE | ID: mdl-33609993

ABSTRACT

The generation of cavitation-free radicals through evanescent electric field and bulk-streaming was reported when micro-volumes of a liquid were subjected to 10 MHz surface acoustic waves (SAW) on a piezoelectric substrate [Rezk et al., J. Phys. Chem. Lett. 2020, 11, 4655-4661; Rezk et al., Adv. Sci. 2021, 8, 2001983]. In the current study, we have tested a similar hypothesis with PZT-based ultrasonic units (760 kHz and 2 MHz) with varying dissolved gas concentrations, by sonochemiluminescence measurement and iodide dosimetry, to correlate radical generation with dissolved gas concentrations. The dissolved gas concentration was adjusted by controlling the over-head gas pressure. Our study reveals that there is a strong correlation between sonochemical activity and dissolved gas concentration, with negligible sonochemical activity at near-vacuum conditions. We therefore conclude that radical generation is dominated by acoustic cavitation in conventional PZT-based ultrasonic reactors, regardless of the excitation frequency.

3.
Biophys Rev ; 13(6): 1229-1243, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35059039

ABSTRACT

Acoustic cavitation (or the formation of bubbles using acoustic or ultrasound-based devices) has been extensively exploited for biological applications in the form of bioprocessing and drug delivery/uptake. However, the governing parameters behind the several physical effects induced by cavitation are generally lacking in quantity in terms of suitable operating parameters of ultrasonic units. This review elaborates the current gaps in this realm and summarizes suitable investigative tools to explore the shear generated during cavitation. The underlying physics behind these events are also discussed. Furthermore, current advances of acoustic shear on biological specimens as well as future prospects of this cavitation-induced shear are also described.

4.
Microvasc Res ; 132: 104039, 2020 11.
Article in English | MEDLINE | ID: mdl-32645366

ABSTRACT

Implantable medical devices and biosensors are pivotal in revolutionizing the field of medical technology by opening new dimensions in the field of disease detection and cure. These devices need to harness a biocompatible and physiologically sustainable safe power source instead of relying on external stimuli, overcoming the constraints on their applicability in-vivo. Here, by appealing to the interplay of electromechanics and hydrodynamics in physiologically relevant microvessels, we bring out the role of charged endothelial glycocalyx layer (EGL) towards establishing a streaming potential across physiological fluidic conduits. We account for the complex rheology of blood-mimicking fluid by appealing to Newtonian fluid model representing the blood plasma and a viscoelastic fluid model representing the whole blood. We model the EGL as a poroelastic layer with volumetric charge distribution. Our results reveal that for physiologically relevant micro-flows, the streaming potential induced is typically of the order of 0.1 V/mm, which may turn out to be substantial towards energizing biosensors and implantable medical devices whose power requirements are typically in the range of micro to milliwatts. We also bring out the specific implications of the relevant physiological parameters towards establishment of the streaming potential, with a vision of augmenting the same within plausible functional limits. We further unveil that the dependence of streaming potential on EGL thickness might be one of the key aspects in unlocking the mystery behind the angiogenesis pattern. Our results may open up novel bio-sensing and actuating possibilities in medical diagnostics as well as may provide a possible alternative regarding the development of physiologically safe and biocompatible power sources within the human body.


Subject(s)
Biomimetic Materials , Capillaries/physiology , Endothelial Cells/physiology , Microcirculation , Platelet Glycoprotein GPIb-IX Complex/physiology , Viscoelastic Substances/chemistry , Blood Flow Velocity , Hemorheology , Humans , Hydrodynamics , Models, Cardiovascular
5.
Phys Rev E ; 100(2-1): 023109, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574775

ABSTRACT

A high level of mixing by passive means is a desirable feature in microchannels for various applications, and use of flexible obstacles (or plates) is one of the prime choices in that regard. To gain further insight, we carry out two-dimensional numerical simulations for flow past one or two flexible plates anchored to a channel's opposite walls using a fluid-structure interaction framework. For the inlet flow Reynolds number vs the Strouhal number plane, we observe a sudden flow change from a laminar to a time-periodic vortex shedding state when flexible plates are present in the channel. We found the critical Reynolds number to be Re_{cr}≈370 when a single plate is anchored on the channel wall and Re_{cr}≈290 or even lower when two plates are anchored. With an increase in the inlet flow Reynolds number (up to 3200), we found that vortices detach regularly at the plates' tips, which causes the flow to meander in the channel. In a two-plate anchored configuration, primary vortices generated at the first plate are constrained by the second plate and result in an energetic secondary vortex generation in the downstream side. The overall flow features and the energy dissipation in the channel are mainly controlled by the separation gap between the plates. At high-inlet-flow Reynolds numbers (≥1600), the probability density function (F) of the kinetic energy dissipation in a flexible plate configuration shows a stretched exponential shape in the form F(Z)∼1/sqrt[Z]e^{-pZ^{q}}, where Z is the normalized kinetic energy dissipation and the constants p=0.89 and q=0.86. The observed increase in energy dissipation comes at the cost of an increase in pressure loss in the channel, and we found that the loss is inversely related to the plates' separation gap. From our simulations, we found that if high mixing levels are desired, then two flexible plates anchored to the channel walls is a better choice than a channel flow without obstacles or flow past a single plate. The two-plate configuration with zero separation gap between the plates is best suited to achieve a high mixing level.

6.
Phys Rev E ; 99(5-1): 053101, 2019 May.
Article in English | MEDLINE | ID: mdl-31212562

ABSTRACT

Continuous release of gas bubbles in large numbers from a localized source in a liquid column, popularly known as "bubble plumes", is very relevant in nature and industries. The bubble plumes morphologically consist of a long continuous stem supporting a dispersed head. Through our direct numerical simulations using two-way coupled Euler-Lagrangian framework, we show that a bubble plume rising in a quiescent liquid column develops clusterlike instabilities for the Grashof numbers, Gr>145. For levels Gr<100, the stem is continuous with a small plume head, whereas at high buoyancy (Gr>350), the plume stem shows intermittently passing puffing instabilities in the form of bubble clusters. The clusters are a group of bubbles localized in space with high concentration that travel upward with speed C_{ph}=0.45U_{C} and are separated by a distance of at least 5L_{0}, where U_{C} is the characteristic velocity and L_{0} is the characteristic length based on the injection conditions. The bubble rise Reynolds numbers in the steady state for both the plume head and the stem shows Re∝Gr^{0.45±0.03}, and the proportionality constant is ten times higher in the plume stem than in the plume head. In the plume core, the spatial acceleration due to the bubble motion generates the turbulent production, whereas, at the plume edge, the small-scale fluctuations generate the mean vorticity. At high Gr, the clusters evolve due to the lift forces acting on the bubbles as a result of increase in the mean vorticity. While rising, bubbles entrain the liquid from the surroundings, and we found that the entrainment rate is not as strong as compared to the classical thermal plumes.

7.
Proc Natl Acad Sci U S A ; 110(23): 9237-42, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23696657

ABSTRACT

Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.


Subject(s)
Hot Temperature , Models, Chemical , Phase Transition , Convection , Transition Temperature
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056315, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214884

ABSTRACT

We numerically investigate the radial dependence of the velocity and temperature fluctuations and of the time-averaged heat flux j ¯(r) in a cylindrical Rayleigh-Bénard cell with aspect ratio Γ=1 for Rayleigh numbers Ra between 2×10^{6} and 2×10^{9} at a fixed Prandtl number Pr=5.2. The numerical results reveal that the heat flux close to the sidewall is larger than in the center and that, just as the global heat transport, it has an effective power law dependence on the Rayleigh number, j ¯(r)∝Ra{γ{j}(r)}. The scaling exponent γ{j}(r) decreases monotonically from 0.43 near the axis (r≈0) to 0.29 close to the sidewalls (r≈D/2). The effective exponents near the axis and the sidewall agree well with the measurements of Shang et al. [Phys. Rev. Lett. 100, 244503 (2008)] and the predictions of Grossmann and Lohse [Phys. Fluids 16, 1070 (2004)]. Extrapolating our results to large Rayleigh number would imply a crossover at Ra≈10^{15}, where the heat flux near the axis would begin to dominate. In addition, we find that the local heat flux is more than twice as high at the location where warm or cold plumes go up or down than in plume depleted regions.


Subject(s)
Energy Transfer , Hot Temperature , Models, Theoretical , Nonlinear Dynamics , Rheology/methods , Computer Simulation
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036312, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22060497

ABSTRACT

Numerical results for kinetic and thermal energy dissipation rates in bubbly Rayleigh-Bénard convection are reported. Bubbles have a twofold effect on the flow: on the one hand, they absorb or release heat to the surrounding liquid phase, thus tending to decrease the temperature differences responsible for the convective motion; but on the other hand, the absorbed heat causes the bubbles to grow, thus increasing their buoyancy and enhancing turbulence (or, more properly, pseudoturbulence) by generating velocity fluctuations. This enhancement depends on the ratio of the sensible heat to the latent heat of the phase change, given by the Jakob number, which determines the dynamics of the bubble growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...