Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(24): e202404679, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38603546

ABSTRACT

We disclose a Ni-catalyzed cyclization/alkylmetal interception reaction in which products are readily linearized to permit regiodefined alkene dicarbofunctionalization. This method offers a convenient route to access 1,2-oxasilolane heterocycles, 3-hydroxysilanes and 4-arylalkanols with the formation of C(sp3)-C(sp3) bonds at primary and secondary alkyl carbon centers. In this reaction, a silicon-oxygen (Si-O) bond functions as a detachable linker that can be delinked with several hydride, alkyl, aryl and vinyl nucleophiles to create profusely functionalized 3-hydroxysilanes. A silicon motif in the cyclic C(sp3)-Si-O construct in 1,2-oxasilolane heterocycles can also be selectively deleted by Pd-catalyzed hydrodesilylation affording Si-ablated linear alcohol products reminiscent of vicinal ethylene dicarbofunctionalization with C(sp3) and C(sp2) carbon sources.

2.
ACS Omega ; 8(22): 19912-19916, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37305246

ABSTRACT

We disclose a palladium-catalyzed difunctionalization of skipped diene with alkenyl triflates and arylboronic acids to produce 1,3-alkenylarylated products. The reaction proceeded efficiently with Pd(acac)2 as a catalyst and CsF as a base for a wide range of electron-deficient and electron-rich arylboronic acids as well as oxygen-heterocyclic, sterically hindered, and complex natural product-derived alkenyl triflates bearing various functional groups. The reaction produced 3-aryl-5-alkenylcyclohexene derivatives with 1,3-syn-disubstituted stereochemistry.

3.
Angew Chem Int Ed Engl ; 60(35): 19092-19096, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34115911

ABSTRACT

We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.

SELECTION OF CITATIONS
SEARCH DETAIL
...