Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 10: 593760, 2020.
Article in English | MEDLINE | ID: mdl-33680922

ABSTRACT

Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein-protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein-protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.

2.
Article in English | MEDLINE | ID: mdl-31620080

ABSTRACT

Objective: Circulating free DNA (cfDNA) in general and circulating tumor DNA (ctDNA) in particular is becoming an increasingly used form of liquid biopsy biomarkers. In this study, we are investigating the ability to detect ctDNA from the plasma of pituitary adenoma (PA) patients. Design: Tumor tissue samples were obtained from planed PA resections, before which blood plasma samples were taken. Somatic variants found in PA tissue samples were evaluated in related cfDNA, isolated from plasma samples. Methods: Sanger sequencing, as well as previously obtained whole-exome sequencing data, were used to evaluate somatic variants composition in tumor tissue samples. cfDNA was isolated from the same PA patients and competitive allele-specific TaqMan PCR and amplicon-based next-generation sequencing (NGS) approach were used for targeted detection of variants found in corresponding tumor tissue samples. Results: Using NGS-based analysis, we detected five out of 17 somatic variants in 40 to 60% of total reads, three variants in 0.50-5.00% of total read count, including GNAS c.601C>T, which was detected using ultra-deep NGS (1.78 million X) in 0.77% of amplicons reads. Nine variants were not detected. We also detected We were not able to detect variant found in PA tissue in cfDNA using cast-PCR, indicating that the portion of variant-containing ctDNA in total isolated cfDNA is too small to be detected with this method. Conclusions: For the first time, we demonstrate the possibility to detect somatic variants of PA in cfDNA isolated from patients' blood plasma. Whether the source of variant detected in cfDNA is PA should be further tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...