Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 170: 106103, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34936936

ABSTRACT

Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Financial Stress , Humans , Prevalence
2.
Int J Biol Macromol ; 159: 250-257, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32417540

ABSTRACT

Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of ß-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Acyltransferases/metabolism , Cupriavidus necator/metabolism , Fermentation , Plant Oils/metabolism , 3-Hydroxybutyric Acid/isolation & purification , Caproates/isolation & purification , Enzyme Activation , Molecular Weight , Oxidation-Reduction , Palm Oil/metabolism , Plasmids/chemistry , Polyhydroxyalkanoates/biosynthesis , Polymers/metabolism , Transformation, Bacterial
3.
Article in English | MEDLINE | ID: mdl-32258007

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a potential replacement for some petrochemical-based plastics. PHAs are polyesters synthesized and stored by various bacteria and archaea in their cytoplasm as water-insoluble inclusions. PHAs are usually produced when the microbes are cultured with nutrient-limiting concentrations of nitrogen, phosphorus, sulfur, or oxygen and excess carbon sources. Such fermentation conditions have been optimized by industry to reduce the cost of PHAs produced commercially. Industrially, these biodegradable polyesters are derived from microbial fermentation processes utilizing various carbon sources. One of the major constraints in scaling-up PHA production is the cost of the carbon source metabolized by the microorganisms. Hence, cheap and renewable carbon substrates are currently being investigated around the globe. Plant and animal oils have been demonstrated to be excellent carbon sources for high yield production of PHAs. Waste streams from oil mills or the used oils, which are even cheaper, are also used. This approach not only reduces the production cost for PHAs, but also makes a significant contribution toward the reduction of environmental pollution caused by the used oil. Advancements in the genetic and metabolic engineering of bacterial strains have enabled a more efficient utilization of various carbon sources, in achieving high PHA yields with specified monomer compositions. This review discusses recent developments in the biosynthesis and classification of various forms of PHAs produced using crude and waste oils from the oil palm and fish industries. The biodegradability of the PHAs produced from these oils will also be discussed.

4.
Biomacromolecules ; 14(1): 10-6, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23215041

ABSTRACT

To develop a new easy and quick gene delivery system for any types of plants, we prepared ionic complexes of plasmid DNA with designed peptide carriers, each of which combined a cell-penetrating peptide (Bp100 or Tat(2)) with a polycation (nona-arginine or a copolymer of histidine and lysine). The present system via the designed peptides demonstrated rapid and efficient transient transfections into intact leaf cells of Nicotiana benthamiana and Arabidopsis thaliana without protoplast preparations. The designed peptides demonstrated significantly higher transfection efficiency in comparison to the nonfusion peptides (Bp100, Tat2, nona-arginine, and copolymer of histidine and lysine), indicating that the combination of functional peptides was a key to develop an efficient peptide-based gene delivery system. On the basis of the results, we exhibited the versatility of the designed peptide-based gene delivery system, which will explore the application of plant biotechnology.


Subject(s)
Drug Carriers/administration & dosage , Drug Design , Gene Transfer Techniques , Peptides/genetics , Plant Cells/physiology , Amino Acid Sequence , Arabidopsis/chemistry , Arabidopsis/cytology , Arabidopsis/genetics , Drug Carriers/chemistry , Molecular Sequence Data , Peptides/administration & dosage , Peptides/chemistry , Plant Cells/chemistry , Plant Cells/drug effects , Plant Leaves/chemistry , Plant Leaves/cytology , Plant Leaves/genetics , Time Factors , Nicotiana/chemistry , Nicotiana/cytology , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...