Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568792

ABSTRACT

Chia (Salvia hispanica L., Lamiaceae) is an important commercial and medicinal crop recently popularized in India and widely cultivated in Karnataka (Joy et al., 2022). During the field survey of chia crop diseases, characteristic virescence like symptoms were observed at Main Agricultural Research Station, UAS, Raichur as well as at Mysuru and HD Kote region. The incidence was ranged from 2 - 4 per cent in an area of 30 hectares. Typical symptoms associated with chia are malformed shoot and/or inflorescence axis with reduced floral parts with greenish florets. The stem axis become thick, flattened, leaves are reduced towards terminal region. A total of five phytoplasma suspected samples and five suspected healthy samples were used for identification purpose. The Plant Genomic DNA Miniprep Kit (Sigma Aldrich, USA) was used to extract the DNA from five symptomatic and five asymptomatic samples and the DNA was used as template to amplify the phytoplasma-specific 16S rDNA gene using P1/P7 primers (Deng and Hiruki, 1991; Schneider et al., 1995) followed by nested PCR using R16F2n/R16R2 primers (Gundersen and Lee 1996). The expected 1.25-kb amplicon was detected from the suspected symptomatic samples. Nested PCR products were purified and sequenced from both the directions using ABIX370 Genetic Analyzer (Applied Biosystems, Waltham, MA). The analysis revealed that all five sequences shared 100 per cent identity with Candidatus Phytoplasma aurantifolia (OM649850, ON975012) and Tomato big bud phytoplasma (EF193359). The in-silico RFLP pattern of F2n/R2 primed region of 16S rDNA gene analyzed by using iPhyClassifier (Zhao et al. 2009) revealed that the sequence shared 98.72 per cent nucleotide sequence similarity with coefficient value of 1.00 to the reference strain RFLP pattern of 16Sr group II, subgroup D (witches'-broom disease of lime; U15442). Based on 16SrDNA sequences and in-silico RFLP analysis, the phytoplasma associated with the chia virescence was identified as a member of 16SrII-D group. Further, SecA gene was also amplified from the samples using SecAfor1/SecArev3 primer pair (Hodgetts et al., 2008). All samples produced ~400 bp products and sequenced as detailed above. Sequence analysis by nBLAST revealed 100 per cent similarity to Ca. P. australasia (MW020545) and Ca. P. aurantifolia isolate Idukki Kerala 1 (MK726369) both representing 16SrII-D group phytoplasma. The representative sequence (16Sr: PP359693, PP359694; secA:PP386558, PP386559) were deposited in GenBank. Chia virescence phytoplasma belonging to Ca. phytoplasma australasia has not been reported anywhere. The phytopathological studies associated with chia crop are very limited. Joy et al. (2022) reported the occurrence of foot rot disease caused by Athelia rolfsii. Several hosts are recorded to be associated with 16SrII D phytoplasma which includes china aster, eggplant and crotalaria (Mahadevakumar et al., 2017, Yadav et al., 2016a, b). Now the wide occurrence of the phytoplasma in the area might have transmitted by vectors. The occurrence of virescence is of great importance as it affects the overall yield which reduces the market value. To our knowledge, this is the first report of a group 16SrII-D phytoplasma associated with chia virescence in India.

2.
Plant Dis ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522850

ABSTRACT

Crossandra (Crossandra infundubuliformis (L.) Nees.) is one of the main floriculture crops in Karnataka. In 2020 (March-June), a characteristic leaf spot disease of unknown etiology with an incidence ranging from 10-12% (~30 ha area evaluated) was observed in Southern Karnataka (Mysore, Mandya). Initially, the symptoms developed as small specks (3 to 8 mm), characterized by circular to irregular shapes in the beginning and coalesced to form larger lesions. Ten samples were collected in polybags followed by the isolation of associated fungal pathogen on potato dextrose agar (PDA) medium amended with Chloramphenicol (60 mg/L). Briefly, small pieces of infected leaves were cut into small pieces and surface sterilized with 2% sodium hypochlorite (NaOCl) solution, rinsed three times with sterile distilled water (SDW), blot dried, then inoculated onto PDA medium, and incubated at room temperature (27 ± 2°C) for 3 - 5 days. Fungal colonies developed from the segments and were subcultured through hyphal tipping to fresh PDA plates to get pure cultures. A total of 12 pure cultures were obtained. Mycelia were initially white and eventually turned gray. The conidia were black, single-celled, smooth, spherical to subspherical, 9 to 18 µm in diameter (n=50), and borne singly on a hyaline vesicle at the tip of each conidiophore. The identity was initially established based on the cultural features and conidial morphology as Nigrospora sp. (Deepika et al., 2021). To confirm the identity of fungal isolates based on molecular sequence analysis was performed for two representative isolates (CIT1 & CIT2). ITS-rDNA, tub2 & EF-1α gene were amplified using primers ITS1/ITS4, T1/T22 & EF1-728F/986R (White et al., 1990; O'Donnel and Cigelnik, 1997; Carbone and Kohn, 1999), then purified and sequenced. The BLASTn analysis of ITS, tub2 and EF-1α gene showed 99-100% similarity with reference sequences from the GenBank database to Nigrospora sphaerica (ITS: 520bp, KX985935 - LC7312; MH854878 - CBS:166.26; tub2: 357bp, MZ032030 - WYR007, 350bp, KY019606 - LC7298, KY019522 - LC4278, KY019520 - LC4274; EF-1α: 472bp, KY019397 - LC7294, KY019331 - LC4241; MN864137 - HN-BH-3) and the sequences were deposited in GenBank (ITS: OL672271 & OL672272; tub2: OL782120 & OL782121; EF-1α: ON051604 & ON051605) (Wang et al., 2017). The associated fungal pathogen was identified as N. sphaerica (Sacc.) Mason (Chen et al. 2018; Deepika et al., 2021) based on the cultural, morphological, microscopic, and molecular characteristics. Further, pathogenicity tests were conducted on healthy plants (Crossandra cv. Arka; n=30) grown under greenhouse conditions (28±2 °C; 80% RH). Inoculations were made with conidial suspension (18 days old N. sphaerica isolate CIT1, 106 conidia/ml) prepared in SDW, and healthy plants sprayed with SDW (n=10) served as controls. All the plants were covered with polyethylene bags for 24-48 hr and observations were made at regular intervals. Typical necrotic lesions developed on 16 plants after 12 days after inoculation but no symptoms were observed on the control plants. The associated pathogen was re-isolated from diseased leaves and confirmed their identity based on morphology and cultural characteristics. Earlier, N. sphaerica was associated with various tree species as an endophyte, and recently several reports have appeared to cause disease on various crop plants (Deepika et al., 2021). However, there are no previous reports on the association of N. sphaerica causing leaf spot disease on C. infundibuliformis from India. Early diagnosis of this leaf spot disease will help the floriculturist adopt suitable management practices to avoid significant economic loss.

3.
Plant Dis ; 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35134302

ABSTRACT

Salvia hispanica L. (Lamiaceae) commonly called 'chia' is an important food crop that has gained significance in recent times globally due to its nutritive value. During a field survey (Mysore district, Karnataka, October, 2021), chia fields were found associated with a characteristic foot rot disease. Further, the presence of mycelial structures along with sclerotial bodies was recorded near the stem-soil interface on the infected plants. The disease incidence ranged 15-21% in an area of approximately 15 hectares of chia fields. The symptoms initially appeared as tan lesions near the stem soil interface and the lesions were colonized by the fast growing mycelium. As the disease progressed, the plants toppled due to death of the stem-root interface region. Infected plants from KM Halli (12º20'90"N; 76º37'68"E) and DMG Halli (12º28'50"N; 76º51'66"E) (n=30) were sampled and associated fungal pathogen isolated on potato dextrose agar (PDA; HiMedia Lab, Mumbai). Fungal mycelia developing from the infected tissues were inoculated on to fresh PDA plates to obtained pure cultures for further identification. Fungal colonies with dense, aerial whitish-cottony mycelia with uniformly globoid sclerotia (0.52.9 mm) were observed after 1012 days of incubation at room temperature. Sclerotia were white at first and turned brown with age. The average number of sclerotia produced per plate ranged from 150 to >280 (n = 10). To further to confirm the identity of the isolates, three representative isolates (SrSh1, SrSh5 and SrSh10) was subjected to molecular identification based on ITS-rDNA sequences. Briefly, genomic DNA was isolated from 12 day old cultures using the CTAB method and ITS-rDNA was amplified using ITS1-ITS4 primers (White et al., 1990). An expected amplicon of >650 bp was obtained and later sequenced from both the directions. The consensus sequences were analysed through nBLAST search which revealed that 100% (643/643 bp) sequence similarity with reference sequences of Athelia rolfsii (S. rolfsii) from GenBank database (KY640622 and AB075298). A phylogenetic tree obtained by the neighbor-joining method using MEGAX shared a common clade with the reference sequences retrieved and computed, thus confirming the identification based on sequence analysis and molecular phylogeny. The representative sequence of A. rolfsii isolates SrSh1, SrSh4 and SrSh7 isolates deposited in GenBank with Accession no OM021878-OM021880. Based on etiology, morphological, cultural and molecular data the pathogen was identified as Athelia rolfsii (Curzi) Tu & Kimbrough (Syn: Sclerotium rolfsii Sacc.) (Mordue, 1974; Mahadevakumar et al., 2016, 2018). Pathogenicity tests were conducted by inoculating the sclerotial bodies near stem soil interface of chia plants grown under green house (at 28 ± 2°C and 70% relative humidity). Briefly, a total of 60 healthy plants were inoculated with sclerotia and covered with polythene bags for 2 days and removed later. Plants (n=20) inoculated without any sclerotia were treated as controls. The development of characteristic foot rot disease was observed after 6-8 days post inoculation. A total of 38 plants showed the foot rot symptoms while control plants remained healthy. The identity of the fungus was confirmed by morphology and molecular sequence analysis after re-isolation. Chia is an important food crop and in recent times has been regarded as super food. Although S. rolfsii is known to be associated with many crops, this is the first report in chia. Therefore, to the best of our knowledge, this is the first report of foot rot disease caused by Sclerotium rolfsii on chia in India. Early diagnosis of this disease will help the farmers to adopt suitable management practices to avoid loss.

5.
World J Microbiol Biotechnol ; 37(10): 172, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34518944

ABSTRACT

The focus of the present study was to characterize antimicrobial peptide produced by potential probiotic cultures of Enterococcus durans DB-1aa (MCC4243), Lactiplantibacillus plantarum Cu2-PM7 (MCC4246) and Limosilactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus MTCC 96 and Escherichia coli MTCC118. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound of all the three selected cultures after ion-exchange chromatography was found to be thermoresistant and stable under a wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, α-amylase and lipase. Comparatively, bacteriocins from L. fermentum Cu3-PM8 and L. plantarum Cu2-PM7 showed higher stability under studied parameter, hence was taken up for further investigation. The apparent molecular weight of bacteriocin from L. fermentum MCC4233 and L. plantarum MCC4246 was found to be 3.5 kDa. Further, plantaricin gene from MCC4246 was characterized in silico. The translated partial amino acid sequence of the plnA gene in MCC4246 displayed 48 amino acids showing 100 % similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 ß sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The predicted properties of the peptide included an isoelectric point of 10.82 and a hydrophobicity of 48.6 %. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts "KSSAYSLQMGATAIKQVKKLFKKWGW" to be a peptide responsible for antimicrobial activity. The study provides information about a broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as a biopreservative agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterococcus/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Probiotics/pharmacology , Staphylococcus aureus/drug effects , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Computer Simulation , Enterococcus/genetics , Enterococcus/metabolism , Molecular Weight , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Probiotics/chemistry , Probiotics/metabolism , Staphylococcus aureus/growth & development
6.
Arch Microbiol ; 203(2): 579-595, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32990771

ABSTRACT

Consumer's vigilance towards health-promoting foods beyond only taste and nutrition has increased the recognition for probiotic products. In the present study, various parameters have been studied to define the probiotic properties of cultures isolated from different fermented products. Around 118 samples were selectively screened for antimicrobial compound (AMC) producing isolates by overlay-plate assay using Micrococcus luteus ATCC9341. Among 134 zone producing isolates, 48 cultures showing Gram-positive, catalase negative, non-spore forming and non-motile rods and cocci were selected. Subsequently, 18 strains were chosen based on non-hemolytic, absence of biogenic amine production, gelatinase and lecithinase negative trait for safer isolates. These were identified by biochemical assays and then subjected to RAPD-PCR. The selected cultures DB-1aa, DB-b2-15b, Cu2-PM7, Cu3-PM8 and IB-pM15 were identified by 16S rDNA sequencing as Enterococcus durans, Enterococcus faecium, Lactobacillus plantarum, and two Lactobacillus fermentum, respectively. Several in vitro experiments were carried out including acid and bile tolerance, survival under simulated gastrointestinal condition, adhesion assay to evaluate the probiotic potential of the isolates. In addition, the isolates were studied for competent properties such as antibacterial, antioxidant activity, and enzyme production for their functional application. The results of the study prove the efficiency of selected isolates as potential probiotic cultures and hence can be recommended for application in any functional food formulations.


Subject(s)
Fermented Foods/microbiology , Lactobacillales/classification , Probiotics/classification , Bacterial Proteins/metabolism , Enterococcus/genetics , Enterococcus/isolation & purification , Enterococcus/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Enterococcus faecium/metabolism , Fermentation , Lactobacillales/genetics , Lactobacillales/isolation & purification , Lactobacillales/metabolism , Limosilactobacillus fermentum/genetics , Limosilactobacillus fermentum/isolation & purification , Limosilactobacillus fermentum/metabolism , Lactobacillus plantarum/genetics , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/metabolism , Probiotics/isolation & purification , Probiotics/metabolism , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique
7.
Curr Microbiol ; 77(12): 4140-4151, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33029717

ABSTRACT

Cowpea is an important pulse crop extensively grown in arid and semi-arid tropics which is affected by a number of diseases. Fungi belonging to mycelia sterilia are known to cause many diseases on cereals and pulses. During the cowpea field survey in Mysore District of Karnataka (India), Dactuliophora sp. was identified as the major pathogen causing zonate leaf spot (ZLS) disease. The fungal pathogen was isolated from naturally infected cowpea leaves and identified as a member belongs to the genus Dactuliophora, which was previously described by CLA Leakey in the year 1964 on Vigna unguiculata from Africa. However, detailed morphological and cultural examinations of the pathogen revealed striking differences from that of D. tarrii. Based on differences in morphology with D. tarrii, a new species Dactuliophora mysorensis sp. nov. is described herein. The disease incidence as well as disease index was estimated for 3 years (2016-2018). The severity of the disease was high during August-November. High incidence and disease index of ZLS was recorded in Doddamaragowdanahally region. The pathogenicity tests demonstrated similar symptoms of ZLS. The ITS barcoding revealed that the pathogen is closely related to Rhizoctonia bataticola and Macrophomina phaseolina. Further, in vitro evaluation of fungicides was carried out by poisoned food technique. Among the five fungicides examined, only two systemic fungicides (Benomyl and Carbendazim) were effective against D. mysorensis. Thus, the present study recommends Benomyl and Carbendazim for management of ZLS disease caused by D. mysorensis.


Subject(s)
Ascomycota , Fungicides, Industrial , Vigna , Ascomycota/genetics , India
8.
Plant Dis ; 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32840432

ABSTRACT

Cowpea (Vigna unguiculata (L.) Walp) is one of the main legume crops grown in arid and semi-arid regions in the world. Brazil, Haiti, Myanmar, Nigeria, Sri Lanka, United States, and India contributes to the substantial production of cowpea at the global level (Mahadevakumar and Janardhana, 2012, 2014). Field surveys conducted during 2017-19 (August-September) in major cowpea growing regions of southern Karnataka revealed the occurrence of characteristic leaf spot disease of unknown etiology with an incidence ranging from 6 to 8%. Initially, the symptoms developed as small specks (1.5 to 3.5 mm), characterized by circular or irregular shape. These lesions began to develop from the leaf margin and regularly extended and coalesced to form larger lesions. After the successful manifestation of the symptoms on leaves, the associated fungal pathogen was isolated. In brief, the infected leaves were surface sterilized with 2% NaOCl for 2 min, rinsed thrice in sterile distilled water (SDW) and blotter dried. The leaf sections were placed on potato dextrose agar (PDA) in Petri plates and incubated at room temperature (27 ± 2°C) for 10 to 12 days. Mycelia developed from infected tissues were transferred to fresh PDA plates and pure cultures were obtained. Mycelia were initially white and eventually turned into gray. The conidia were black, single-celled, smooth, spherical to subspherical, 10 to 22 µm in diameter (n=30), and borne singly on a hyaline vesicle at the tip of each conidiophore. Based on the cultural features and conidial morphology, the fungus was identified as Nigrospora sp. Further, to identify the pathogen to the species level, the ITS region of the ribosomal RNA gene was amplified using primers ITS1 and ITS4 (White et al. 1990). The amplified PCR products were purified and sequenced. The nBLAST analysis showed 100% similarity with reference sequences from the GenBank database Nigrospora sphaerica (MT225783.1; MN795578.1), and the sequences were deposited in GenBank (Accession No. MT305812.1, MT305813.1, MT305814.1). Based on the cultural, morphological, microscopic and molecular characteristics, the associated fungal pathogen was identified as N. sphaerica (Sacc.) Mason (Chen et al. 2018; Wang et al. 2017) and a voucher specimen was deposited at University of Mysore Herbarium with accession No. UOM20-NS1. Further, pathogenicity tests were conducted on healthy cowpea plants grown under greenhouse conditions. Inoculations were made with conidial suspension (105 conidia/ml) prepared in SDW and healthy plants sprayed with SDW served as a standard control. All the plants were covered with polyethylene bags for 24-48 hr and observations were made at regular intervals. Typical necrotic lesions developed after 12 days of inoculation and no such symptoms were observed on the standard control set. The associated pathogen was re-isolated from diseased leaves and its identity confirmed based on morphology and cultural characteristics. Leaf spots are becoming a major problem in cowpea growing areas in recent years (Dactuliophora sp., Pestalotiopsis leaf spot, Alternaria leaf spot, and many others) (Mahadevakumar and Janardhana 2012, 2014). Recently, Aplosporella hesperidica causing collar rot on cowpea has been reported from the same region (Deepika et al. 2020). The seed borne occurrence N. sphaerica on cowpea is reported from Brazil (Rodrigues and Menezes 2002), there are no previous reports available on the occurrence of N. sphaerica on cowpea leaf spots, the present investigation is the first report of N. sphaerica causing leaf spot disease on cowpea from India.

9.
Lett Appl Microbiol ; 71(2): 154-163, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32255198

ABSTRACT

Cowpea is an important pulse crop cultivated in arid and semi-arid regions of the world. During field survey, a characteristic wilt was observed in around 45 ha of cowpea fields with incidence 17-25%. Infection was seen in pre-flowering stage and infected plants showed quick wilt symptoms with tan lesions near the stem-soil interface. Fungal pathogens associated were isolated on PDA, which produced dark to grey olivaceous colonies in the centre, and aerial mycelia were appressed with floccose and white to smoke-grey. Conidia are aseptate, initially hyaline, smooth-walled, broadly ellipsoidal with rounded ends becoming dark brown. Based on these morphological features, the fungal pathogen was identified as Aplosporella sp. The ITS-rDNA region was amplified using ITS1/ITS4 primers and sequenced. The nBLAST and phylogenetic analysis confirmed the pathogen as Aplosporella hesperidica. The Koch's postulates were performed on 45-days-old cowpea plants with mycelial disc of A. hesperidica. Development of typical necrotic lesions was observed after 28 days of post-inoculation and the pathogen's identity was confirmed based on re-isolation. Efficacy of fungicides evaluated in vitro showed that the pathogen is highly sensitive to systemic fungicides rather than the contact fungicides. The cowpea production was severely affected owing to the causative agent A. hesperidica. The collar rot disease of cowpea by A. hesperidica is the first report in India. SIGNIFICANCE AND IMPACT OF THE STUDY: A new collar rot disease of cowpea recorded from India has been investigated. The necrotic lesions were enlarged and eventually quick wilt and death of the host plant was observed with incidence ranged from 17 to 25%. Associated fungal pathogen was isolated and identified as Aplosporella hesperidica based on morphology and ITS-rDNA sequence analysis. Koch's postulates were performed under greenhouse conditions and in vitro evaluation of fungicides shows that the pathogen is sensitive to systemic fungicides. This is the first report of A. hesperidica causing collar rot disease of cowpea in India.


Subject(s)
Ascomycota/drug effects , Ascomycota/genetics , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Vigna/microbiology , Ascomycota/classification , Ascomycota/growth & development , DNA, Ribosomal/genetics , India , Microbial Sensitivity Tests , Mycelium/physiology , Phylogeny , Spores, Fungal/physiology
10.
Pharm Biol ; 53(5): 689-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25343229

ABSTRACT

CONTEXT: Cucumis prophetarum Linn. (Cucurbitaceae) fruit is used for inflammatory-related problems and is proved to be possessing anticancer and hepatoprotective effects. OBJECTIVE: The present investigation was to study the effect of different fractions of C. prophetarum on antidiabetic and antioxidant activity. MATERIALS AND METHODS: Aqueous crude extract (CE) of C. prophetarum fruits was fractionated into water soluble fraction 1 (F1), chloroform fraction 2 (F2), basic fraction 3 (F3), and neutral fraction 4 (F4) by acid-base extraction. CE and its fractions at different doses (0.02-0.1 mg/mL) were subjected to antidiabetic (α-amylase and α-glucosidase inhibition assays) and antioxidant (DPPH, superoxide radical scavenging (SO) and metal chelation) evaluation. RESULTS: F1 exhibited effective antidiabetic activity (p < 0.05) with an IC50 value of 20.6 and 59.9 µg/mL. The activity decreased in the order of CE > F4 > F3 > F2, according to α-amylase assay, which were the same, with the exception of the rank order of F4 and CE, as the α-glucosidase assay. Furthermore, F1 (IC50 = 73 µg/mL) showed better reducing ability than CE >F4 >F2 > F3 (IC50 = 78-272 µg/mL), according to the DPPH assay. In SO and metal chelation assays, F1 showed the highest activity (IC50 = 101 and 147 µg/mL), respectively; the activity decreased in the order of CE >F4 >F3 > F2 (IC50 = 126-469 µg/mL) for SO and 194-944 µg/mL for metal chelation assay. CONCLUSION: The results indicate that F1 possesses potent in vitro antidiabetic and antioxidant activities.


Subject(s)
Antioxidants/pharmacology , Cucumis , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidants/isolation & purification , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Fruit , Hypoglycemic Agents/isolation & purification , Plant Extracts/isolation & purification , Swine , alpha-Amylases/antagonists & inhibitors
11.
Phytomedicine ; 21(8-9): 1026-31, 2014.
Article in English | MEDLINE | ID: mdl-24867503

ABSTRACT

OBJECTIVES: To investigate the hepatoprotective, antioxidant and antihyperlipidemic effect of N-Trisaccharide isolated from Cucumis prophetarum (L.) on different experimental rats. METHODS: N-Trisaccharide (25 and 50 mg/kg.b.w), silymarin (25 mg/kg) and glibenclamide (25 mg/kg) was orally administered once daily for 28 days and toxicity evaluation studies were carried out. Liver damage was assessed by determining DNA damage, serum enzyme activities and hepatic histopathology of carbon tetrachloride (CCl4) induced hepatic injury in rats. Enzymatic and non enzymatic antioxidant levels in liver and kidney were determined and biochemical parameters such as, serum lipid profile, renal function markers were estimated in type 2 diabetic rats. RESULTS: DNA fragmentation analysis revealed the protective effect of N-Trisaccharide on liver DNA damage. Histopathological studies indicated that CCl4-induced liver injury was less severe in N-Trisaccharide (25 and 50mg/kg) treated group. Given at the above doses conferred significant protection against the hepatotoxic actions of CCl4 in rats, reducing serum markers like SGOT, SGPT, ALP, creatinine and urea levels back to near normal (p<0.05) compared to untreated rats. In diabetic rats, N-Trisaccharide treatment significantly reversed abnormal status of enzymatic and non-enzymatic antioxidants levels to near normal. Also, serum lipids such as TG, TC, LDL-C and VLDL-C levels were significantly (p<0.05) reduced compared to diabetic untreated rats. CONCLUSION: Present study results confirm that N-Trisaccharide possesses significant antihyperlipidemic, antioxidant and hepatoprotective properties.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Cucumis/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypolipidemic Agents/pharmacology , Plant Extracts/pharmacology , Trisaccharides/pharmacology , Administration, Oral , Animals , Antioxidants/metabolism , Carbon Tetrachloride/adverse effects , DNA Fragmentation/drug effects , Diabetes Mellitus, Experimental/chemically induced , Disease Models, Animal , Female , Glyburide/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Kidney/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/pathology , Male , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Rats, Wistar , Silymarin/pharmacology , Trisaccharides/chemistry , Trisaccharides/isolation & purification
12.
Phytomedicine ; 21(5): 624-30, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24462215

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cucumis prophetarum (L.) is used in traditional Indian medicine for the treatment of inflammation related problems. AIM OF THE STUDY: The present investigation was designed to study the effect of N-Trisaccharide (a new compound isolated from the fruit of C. prophetarum (L.)) on hyperglycemia in streptozotocin (STZ)-nicotinamide (NA) induced type 2 diabetic rats. MATERIALS AND METHODS: Different doses of N-Trisaccharide (25 and 50 mg/kgb.w.) were administered once daily for 28 days to STZ-NA induced diabetic rats. Plasma insulin and glycogen levels were measured. The activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase were measured. Further, histological studies on pancreas were also carried out. RESULTS: The active compound at doses of 25 and 50 mg/kgb.w. given orally for 14 days showed 47.7% and 69.3% antihyperglycemic activity, respectively. Treatment at the same doses for 28 days provided complete protection against STZ-NA challenge (65 and 230 mg/kgb.w., respectively), intraperitoneally. N-Trisaccharide significantly (p≤0.05) increased the plasma insulin and liver glycogen levels in diabetic rats. The altered enzyme activities of carbohydrate metabolism in the liver and kidney of the diabetic rats were significantly (p≤0.05) improved. Additionally, N-Trisaccharide increased glycogen synthase and decreased glycogen phosphorylase activity in diabetic rats. Histological studies confirmed an increase in insulin level is due to stimulation of injured pancreatic ß-cells. CONCLUSION: The results of the study suggested that N-Trisaccharide possesses propitious effect on STZ-NA induced type 2 diabetes, indicating its usefulness in diabetes management.


Subject(s)
Cucumis/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/analysis , Trisaccharides/therapeutic use , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 2/chemically induced , Drug Evaluation, Preclinical , Female , Fruit/chemistry , Glycogen/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Liver/enzymology , Male , Pancreas/drug effects , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal , Rats, Wistar , Trisaccharides/isolation & purification , Trisaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...