Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(6): 6958-6970, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306454

ABSTRACT

This study presents a novel synthesis of self-standing MoP and Mo2N heterostructured electrocatalysts with enhanced stability and catalytic performance. Facilitated by the controlled phase and interfacial microstructure, the seamless structures of these catalysts minimize internal resistivity and prevent local corrosion, contributing to increased stability. The chemical synthesis proceeds with an etching step to activate the surface, followed by phosphor-nitriding in a chemical vapor deposition chamber to produce MoP-Mo2N@Mo heterostructured electrocatalysts. X-ray diffraction analyses confirmed the presence of MoP, Mo2N, and Mo phases in the electrocatalyst. Morphology studies using scanning electron microscopy characterize the hierarchical growth of structures, indicating successful formation of the heterostructure. X-ray photoelectron spectroscopy (XPS) analyses of the as-synthesized and postcatalytic activity samples reveal the chemical shift in terms of the binding energy (BE) of the Mo 3d XPS peak, especially after catalytic activity. The XPS BE shifts are attributed to changes in the oxidation state, electron transfer, and surface reconstruction during catalysis. Electrochemical evaluation of the catalysts indicates the superior performance of the MoP-Mo2N@Mo heterostructured catalyst in hydrogen evolution reactions (HER), with lower overpotentials and enhanced Tafel slopes. The stability tests reveal changes in double layer capacitance over time, suggesting surface reconstruction and an increased active surface area during catalysis. Operando electrochemical impedance spectroscopy (EIS) further elucidates the dynamic changes in resistance and charge transfer during HER. Overall, a comprehensive understanding of the synthesis, characterization, and electrochemical behavior of the developed MoP-Mo2N@Mo heterostructured electrocatalyst, as presented in this work, highlights its potential utilization in sustainable energy applications.

2.
ACS Appl Mater Interfaces ; 15(17): 20925-20945, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37067333

ABSTRACT

A comprehensive and comparative exploration research performed, aiming to elucidate the fundamental mechanisms of rare-earth (RE) metal-ion doping into Li4Ti5O12 (LTO), reveals the enhanced electrochemical performance of the nanocrystalline RE-LTO electrodes in high-power Li-ion batteries. Pristi ne Li4Ti5O12 (LTO) and rare-earth metal-doped Li4-x/3Ti5-2x/3LnxO12 (RE-LTO with RE = Dy, Ce, Nd, Sm, and Eu; x ≈ 0.1) nanocrystalline anode materials were synthesized using a simple mechanochemical method and subsequent calcination at 850 °C. The X-ray diffraction (XRD) patterns of pristine and RE-LTO samples exhibit predominant (111) orientation along with other characteristic peaks corresponding to cubic spinel lattice. No evidence of RE-doping-induced changes was seen in the crystal structure and phase. The average crystallite size for pristine and RE-LTO samples varies in the range of 50-40 nm, confirming the formation of nanoscale crystalline materials and revealing the good efficiency of the ball-milling-assisted process adopted to synthesize nanoscale particles. Raman spectroscopic analyses of the chemical bonding indicate and further validate the phase structural quality in addition to corroborating with XRD data for the cubic spinel structure formation. Transmission electron microscopy (TEM) reveals that both pristine and RE-LTO particles have a similar cubic shape, but RE-LTO particles are better interconnected, which provide a high specific surface area for enhanced Li+-ion storage. The detailed electrochemical characterization confirms that the RE-LTO electrodes constitute promising anode materials for high-power Li-ion batteries. The RE-LTO electrodes deliver better discharge capacities (in the range of 172-198 mAh g-1 at 1C rate) than virgin LTO (168 mAh g-1). Among them, Eu-LTO provides the best discharge capacity of 198 mAh g-1 at a 1C rate. When cycled at a high current rate of 50C, all RE-LTO electrodes show nearly 70% of their initial discharge capacities, resulting in higher rate capability than virgin LTO (63%). The results discussed in this work unfold the fundamental mechanisms of RE doping into LTO and demonstrate the enhanced electrochemical performance derived via chemical composition tailoring in RE-LTO compounds for application in high-power Li-ion batteries.

3.
Bioorg Med Chem Lett ; 61: 128607, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35123006

ABSTRACT

We report a significant decrease in transcription of the G protein-coupled receptor GPR39 in striatal neurons of Parkinson's disease patients compared to healthy controls, suggesting that a positive modulator of GPR39 may beneficially impact neuroprotection. To test this notion, we developed various structurally diverse tool molecules. While we elaborated on previously reported starting points, we also performed an in silico screen which led to completely novel pharmacophores. In vitro studies indicated that GPR39 agonism does not have a profound effect on neuroprotection.


Subject(s)
Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
4.
Heliyon ; 5(7): e02060, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31372537

ABSTRACT

Li2TiO3/Ni foam composites were prepared by a solid-state reaction process. They crystallized in the monoclinic Li2TiO3 structure with C2/c space group. SEM images show that the Li2TiO3 particles are monodispersed crystallites of average size 49 nm, infused into porous scaffold Ni foam. As an anode in lithium battery, the composite delivered a discharge capacity of 153 mAh g-1 in an aqueous electrolyte and retained 95% of its initial capacity after 30 cycles. Moreover, the Li2TiO3/Ni foam composite as a negative electrode of pseudo-supercapacitor delivered a specific capacitance of 593 F g-1 and retained 95% of its initial capacitance after 1000 cycles. The enhanced capacity of Li2TiO3/Ni composite is due to porous scaffold Ni foam, which provides high conductivity to the Li2TiO3 particles and high effective surface area for redox reactions. The performance of the Li2TiO3/Ni foam as an electrode material for both lithium-ion batteries (LIBs) and supercapacitors (SCs) shows that this composite is promising for energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...