Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114350, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870013

ABSTRACT

Renal cell carcinoma with sarcomatoid differentiation (sRCC) is associated with poor survival and a heightened response to immune checkpoint inhibitors (ICIs). Two major barriers to improving outcomes for sRCC are the limited understanding of its gene regulatory programs and the low diagnostic yield of tumor biopsies due to spatial heterogeneity. Herein, we characterized the epigenomic landscape of sRCC by profiling 107 epigenomic libraries from tissue and plasma samples from 50 patients with RCC and healthy volunteers. By profiling histone modifications and DNA methylation, we identified highly recurrent epigenomic reprogramming enriched in sRCC. Furthermore, CRISPRa experiments implicated the transcription factor FOSL1 in activating sRCC-associated gene regulatory programs, and FOSL1 expression was associated with the response to ICIs in RCC in two randomized clinical trials. Finally, we established a blood-based diagnostic approach using detectable sRCC epigenomic signatures in patient plasma, providing a framework for discovering epigenomic correlates of tumor histology via liquid biopsy.

2.
Clin Genitourin Cancer ; 22(2): 558-568.e3, 2024 04.
Article in English | MEDLINE | ID: mdl-38342659

ABSTRACT

INTRODUCTION/BACKGROUND: Immune checkpoint inhibitors (ICIs) have limited efficacy in prostate cancer (PCa). Better biomarkers are needed to predict responses to ICIs. We sought to demonstrate that a panel-based mutational signature identifies mismatch repair (MMR) deficient (MMRd) PCa and is a biomarker of response to pembrolizumab. PATIENTS AND METHODS: Clinico-genomic data was obtained for 2664 patients with PCa sequenced at Dana-Farber Cancer Institute (DFCI) and Memorial Sloan Kettering (MSK). Clinical outcomes were collected for patients with metastatic castration-resistant PCa (mCRPC) treated with pembrolizumab at DFCI. SigMA was used to characterize tumors as MMRd or MMR proficient (MMRp). The concordance between MMRd with microsatellite instability (MSI-H) was assessed. Radiographic progression-free survival (rPFS) and overall survival (OS) were collected for patients treated with pembrolizumab. Event-time distributions were estimated using Kaplan-Meier methodology. RESULTS: Across both cohorts, 100% (DFCI: 12/12; MSK: 43/43) of MSI-H tumors were MMRd. However, 14% (2/14) and 9.1% (6/66) of MMRd tumors in the DFCI and MSK cohorts respectively were microsatellite stable (MSS), and 26% (17/66) were MSI-indeterminate in the MSK cohort. Among patients treated with pembrolizumab, those with MMRd (n = 5) versus MMRp (n = 14) mCRPC experienced markedly improved rPFS (HR = 0.088, 95% CI: 0.011-0.70; P = .0064) and OS (HR = 0.11, 95% CI: 0.014-0.80; P = .010) from start of treatment. Four patients with MMRd experienced remissions of >= 2.5 years. CONCLUSION: SigMA detects additional cases of MMRd as compared to MSI testing in PCa and identifies patients likely to experience durable response to pembrolizumab.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplastic Syndromes, Hereditary/chemically induced , Neoplastic Syndromes, Hereditary/drug therapy
4.
Nat Med ; 29(11): 2737-2741, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37865722

ABSTRACT

Although circulating tumor DNA (ctDNA) assays are increasingly used to inform clinical decisions in cancer care, they have limited ability to identify the transcriptional programs that govern cancer phenotypes and their dynamic changes during the course of disease. To address these limitations, we developed a method for comprehensive epigenomic profiling of cancer from 1 ml of patient plasma. Using an immunoprecipitation-based approach targeting histone modifications and DNA methylation, we measured 1,268 epigenomic profiles in plasma from 433 individuals with one of 15 cancers. Our assay provided a robust proxy for transcriptional activity, allowing us to infer the expression levels of diagnostic markers and drug targets, measure the activity of therapeutically targetable transcription factors and detect epigenetic mechanisms of resistance. This proof-of-concept study in advanced cancers shows how plasma epigenomic profiling has the potential to unlock clinically actionable information that is currently accessible only via direct tissue sampling.


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Epigenomics , Biomarkers, Tumor/genetics , Neoplasms/genetics , Circulating Tumor DNA/genetics , Liquid Biopsy/methods , Mutation
5.
Sci Adv ; 9(14): eadh0411, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37027463

ABSTRACT

During metazoan development, the marked change in developmental potential from the parental germline to the embryo raises an important question regarding how the next life cycle is reset. As the basic unit of chromatin, histones are essential for regulating chromatin structure and function and, accordingly, transcription. However, the genome-wide dynamics of the canonical, replication-coupled (RC) histones during gametogenesis and embryogenesis remain unknown. In this study, we use CRISPR-Cas9-mediated gene editing in Caenorhabditis elegans to investigate the expression pattern and role of individual RC histone H3 genes and compare them to the histone variant, H3.3. We report a tightly regulated epigenome landscape change from the germline to embryos that are regulated through differential expression of distinct histone gene clusters. Together, this study reveals that a change from a H3.3- to H3-enriched epigenome during embryogenesis restricts developmental plasticity and uncovers distinct roles for individual H3 genes in regulating germline chromatin.


Subject(s)
Cell Plasticity , Histones , Animals , Histones/genetics , Histones/metabolism , Chromatin/genetics , Caenorhabditis elegans/metabolism , Embryo, Mammalian/metabolism
6.
Cancer Res ; 82(16): 2848-2859, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35731919

ABSTRACT

African-American (AA) men are more likely to be diagnosed with and die from prostate cancer than European American (EA) men. Despite the central role of the androgen receptor (AR) transcription factor in prostate cancer, little is known about the contribution of epigenetics to observed racial disparities. We performed AR chromatin immunoprecipitation sequencing on primary prostate tumors from AA and EA men, finding that sites with greater AR binding intensity in AA relative to EA prostate cancer are enriched for lipid metabolism and immune response genes. Integration with transcriptomic and metabolomic data demonstrated coinciding upregulation of lipid metabolism gene expression and increased lipid levels in AA prostate cancer. In a metastatic prostate cancer cohort, upregulated lipid metabolism associated with poor prognosis. These findings offer the first insights into ancestry-specific differences in the prostate cancer AR cistrome. The data suggest a model whereby increased androgen signaling may contribute to higher levels of lipid metabolism, immune response, and cytokine signaling in AA prostate tumors. Given the association of upregulated lipogenesis with prostate cancer progression, our study provides a plausible biological explanation for the higher incidence and aggressiveness of prostate cancer observed in AA men. SIGNIFICANCE: With immunotherapies and inhibitors of metabolic enzymes in clinical development, the altered lipid metabolism and immune response in African-American men provides potential therapeutic opportunities to attenuate racial disparities in prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Black or African American/genetics , Humans , Immunity , Lipid Metabolism/genetics , Male , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...