Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693443

ABSTRACT

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge, we developed ONIX, an open-source data acquisition system with high data throughput (2GB/sec) and low closed-loop latencies (<1ms) that uses a novel 0.3 mm thin tether to minimize behavioral impact. Head position and rotation are tracked in 3D and used to drive active commutation without torque measurements. ONIX can acquire from combinations of passive electrodes, Neuropixels probes, head-mounted microscopes, cameras, 3D-trackers, and other data sources. We used ONIX to perform uninterrupted, long (~7 hours) neural recordings in mice as they traversed complex 3-dimensional terrain. ONIX allowed exploration with similar mobility as non-implanted animals, in contrast to conventional tethered systems which restricted movement. By combining long recordings with full mobility, our technology will enable new progress on questions that require high-quality neural recordings during ethologically grounded behaviors.

2.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36104276

ABSTRACT

Given its inputs from auditory structures and neuromodulatory systems, the posterior tail of the striatum is ideally positioned to influence behavioral responses to acoustic stimuli according to context and previous rewards. Results from previous studies indicate that neurons in this striatal region display selective responses to sounds. However, it is not clear whether different striatal cell classes code for distinct features of sounds or how different striatal output pathways may use acoustic information to guide behavior. Here we compared the sound-evoked responses of posterior striatal neurons that form the striatal direct pathway (and express the dopamine receptor D1) to the responses of neighboring neurons in naive mice. We achieved this via optogenetic photo-identification of D1-expressing neurons during extracellular electrophysiological recordings in awake head-fixed mice of both sexes. We found that the frequency tuning of sound-responsive direct-pathway striatal neurons is comparable with that of their sound-responsive neighbors. Moreover, we found that both populations encode amplitude-modulated sounds in a similar fashion. These results suggest that different classes of neurons in the posterior striatum of naive animals have similar access to acoustic features conveyed by the auditory system even outside the context of an auditory task.


Subject(s)
Corpus Striatum , Neostriatum , Animals , Corpus Striatum/physiology , Female , Male , Mice , Neostriatum/physiology , Neurons/physiology , Receptors, Dopamine , Sound
3.
eNeuro ; 9(2)2022.
Article in English | MEDLINE | ID: mdl-35168950

ABSTRACT

The ability to separate background noise from relevant acoustic signals is essential for appropriate sound-driven behavior in natural environments. Examples of this separation are apparent in the auditory system, where neural responses to behaviorally relevant stimuli become increasingly noise invariant along the ascending auditory pathway. However, the mechanisms that underlie this reduction in responses to background noise are not well understood. To address this gap in knowledge, we first evaluated the effects of auditory cortical inactivation on mice of both sexes trained to perform a simple auditory signal-in-noise detection task and found that outputs from the auditory cortex are important for the detection of auditory stimuli in noisy environments. Next, we evaluated the contributions of the two most common cortical inhibitory cell types, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, to the perception of masked auditory stimuli. We found that inactivation of either PV+ or SOM+ cells resulted in a reduction in the ability of mice to determine the presence of auditory stimuli masked by noise. These results indicate that a disruption of auditory cortical network dynamics by either of these two types of inhibitory cells is sufficient to impair the ability to separate acoustic signals from noise.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Female , Interneurons/physiology , Male , Mice , Neurons/physiology , Noise , Parvalbumins/metabolism
4.
J Neurosci ; 40(18): 3564-3575, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32220950

ABSTRACT

Sensory systems integrate multiple stimulus features to generate coherent percepts. Spectral surround suppression, the phenomenon by which sound-evoked responses of auditory neurons are suppressed by stimuli outside their receptive field, is an example of this integration taking place in the auditory system. While this form of global integration is commonly observed in auditory cortical neurons, and potentially used by the nervous system to separate signals from noise, the mechanisms that underlie this suppression of activity are not well understood. We evaluated the contributions to spectral surround suppression of the two most common inhibitory cell types in the cortex, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, in mice of both sexes. We found that inactivating SOM+ cells, but not PV+ cells, significantly reduces sustained spectral surround suppression in excitatory cells, indicating a dominant causal role for SOM+ cells in the integration of information across multiple frequencies. The similarity of these results to those from other sensory cortices provides evidence of common mechanisms across the cerebral cortex for generating global percepts from separate features.SIGNIFICANCE STATEMENT To generate coherent percepts, sensory systems integrate simultaneously occurring features of a stimulus, yet the mechanisms by which this integration occurs are not fully understood. Our results show that neurochemically distinct neuronal subtypes in the primary auditory cortex have different contributions to the integration of different frequency components of an acoustic stimulus. Together with findings from other sensory cortices, our results provide evidence of a common mechanism for cortical computations used for global integration of stimulus features.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/metabolism , Interneurons/metabolism , Somatostatin/biosynthesis , Action Potentials/physiology , Animals , Auditory Cortex/cytology , Electrodes, Implanted , Female , Gene Expression , Male , Mice , Mice, Transgenic , Somatostatin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...