Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 200: 107783, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269825

ABSTRACT

The present study aimed to introduce a new carbon dots nanocarrier (Zn-NCDs) as a slow-release Zn fertilizer. Zn-NCDs was synthesized using a hydrothermal method and characterized by instrumental methods. A greenhouse experiment was then conducted involving two Zn sources (Zn-NCDs and ZnSO4), three concentrations of Zn-NCDs (2, 4, and 8 mg/L), and under sand culture conditions. This study comprehensively evaluated the effects of Zn-NCDs on the zinc, nitrogen, and phytic acid content, biomass, growth indices, and yield in bread wheat (cv. Sirvan). Also, a fluorescence microscope was used to examine the in vivo transport route of Zn-NCDs in wheat organs. Finally, the availability of Zn in soil samples treated with Zn-NCDs was evaluated over 30 days in an incubation experiment. The findings indicated that Zn-NCDs as a slow-release fertilizer increased root-shoot biomass, fertile spikelet, and grain yield by 20, 44, 16, and 43%, respectively, compared to ZnSO4 treatment. The concentration of zinc and nitrogen in the grain was increased by 19% and 118%, respectively, while phytic acid was decreased by 18% than ZnSO4 treatment. Microscopic observations revealed that wheat plants could absorb and transfer Zn-NCDs from roots to stems and leaves through vascular bundles. This study demonstrated for the first time that Zn-NCDs could be used as a slow-release Zn fertilizer with high efficiency and low cost in wheat enrichment. In addition, Zn-NCDs could be applied as a new nano fertilizer and technology for in vivo plant imaging.


Subject(s)
Triticum , Zinc , Fertilizers/analysis , Phytic Acid , Soil , Edible Grain/chemistry , Nitrogen
2.
Environ Sci Pollut Res Int ; 28(26): 34570-34583, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33651291

ABSTRACT

Glomalin is a specific glycoprotein compound synthesized by glomeral fungi and its amount varies according to soil conditions. Due to the symbiosis of these fungi with a multitude of plants, a remarkable amount of glomalin is produced inside the hypha wall of these fungi. Furthermore, while increasing the symbiosis stability, glomalin plays a critical role in reducing the availability of potentially toxic elements (PTEs) through their fixation. In this regard, soil contamination with PTEs such as cadmium (Cd) affects the glomalin production of mycorrhiza fungi. In order to investigate the effect of different levels of Cd on glomalin production of three species of arbuscular mycorrhiza fungi in the presence of sorghum, a greenhouse experiment was conducted in a completely randomized design with factorial arrangement and three repetitions. Factors include four levels of Cd (0, 5, 10, 20 milligrams per kilogram of soil) and second factor included these three types of mycorrhiza: Funneliformis mosseae (FM), Rhizophagus intraradices (RI), and Claroideoglomus etunicatum (CE). The results of this study showed that when increasing soil Cd concentration, shoot dry weight, root colonization percentage, total and easily extractable glomalin decreased while leaf proline concentration, shoot, and root Cd concentration increased. The presence of mycorrhiza in comparison with the control increased the dry weight of shoots and plant height. The results showed that mycorrhizal treatments increased total and easily extractable glomalin compared to the absence of mycorrhiza. Also, the highest amount of glomalin production was observed in two species of FM and CE. Complexation of Cd by total glomalin and easily extractable glomalin was higher in two species of FM and CE rather than RI. The results showed that the use of three species of mycorrhizae reduced the adverse effects of high levels of Cd. Also, the concentration of leaf proline, soluble sugars, shoot, and root Cd concentration was higher in presence of mycorrhizal fungal species than in plant not inoculated with mycorrhizal fungal species. This increase was significant in both FM and CE species. Finally, a notable positive correlation was also observed between glomalin measured by Bradford method and percentage of root colonization.


Subject(s)
Mycorrhizae , Soil Pollutants , Sorghum , Cadmium/analysis , Fungi , Mycorrhizae/chemistry , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
3.
Microb Pathog ; 149: 104473, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32916239

ABSTRACT

INTRODUCTION: Triclosan (TCS) is an extensively used antibacterial agent which has been frequently detected in different environmental compartments. Because of TCS inhibition effect on vast majority of bacterial species, it is important to explore fungal species and their involved enzymes in TCS biodegradation. The aim of this study was to compare the potential of two white rot fungi Pleurotus ostreatus and Trametes versicolor for TCS biodegradation through the whole cell culture of fungi in an aqueous culture medium. Additionally, the changes in ligninolytic enzyme activities and possible correlations and contributions of degradative enzymes during TCS biodegradation process were monitored. MATERIAL AND METHODS: This study was carried out using a factorial experiment with a completely randomized design in three replications. factorial design in The experimental factors included: two white rot fungi Pleurotus ostreatus and Trametes versicolor and uninoculated controls which were subjected to five levels of TCS concentrations (0, 5, 10, 20, 30 and 50 µg mL-1) to assess ligninolytic enzymatic activity during biodegradation of TCS. Samples were harvested periodically at three time intervals (4, 7 and 10 days). An AB SCIEX 3200 QTRAP LC-MS/MS system was used in order to analyze the biodegradation of TCS in liquid medium. RESULTS: Results suggested that the two white rot fungi responded differently when exposed to the different concentrations of TCS. In general, P. ostreatus exhibited more potential and ligninolytic enzymatic activity compared to T. versicolor. LC-MS/MS analyses also showed that P. ostreatus degraded TCS with higher efficiency compared to T. versicolor. In addition, almost all P. ostreatus biodegradation activity was completed within the first day of sampling. Contrasting, less efficient degradation was observed by T. versicolor, reaching around 88% of TCS biodegradation at concentration of 20 µg mL-1after 10 days. At higher TCS concentrations (≥30 µg mL-1), the growth of T. versicolor severely inhibited and led to a drop in enzymatic activity and biodegradation. Furthermore, laccase and manganese peroxidase (MnP) were determined as more involved enzymes which significantly correlated to TCS biodegradation by T. versicolor and P. ostreatus, respectively. CONCLUSION: P. ostreatus might be considered as efficient fungus in biodegradation of high amount of TCS in environmental matrices. The results of the present study might provide insights for future investigations on potential of fungi for applications in bioaugmentation-based strategies to remove TCS from wastewater and activated sludge.


Subject(s)
Pleurotus , Triclosan , Biodegradation, Environmental , Chromatography, Liquid , Laccase , Peroxidases , Polyporaceae , Tandem Mass Spectrometry , Trametes
4.
J Environ Manage ; 256: 109740, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31989972

ABSTRACT

Among hazardous pollutants, 2,4-Dinitrophenol (2,4-DNP) is considered highly toxic and possesses a remarkable resistance to degradation. Therefore, investigation of the possible mechanisms for removal of such pollutants is important. Laccase enzyme can decompose phenolics despite the fact that its application has been limited due to lack of possibility to reuse it. Immobilization can overcome this problem. In this paper, laccase complexes with montmorillonite K10 and zeolite were used to decompose 2,4-DNP with concentrations of 1.5 mg l-1 and 50 mg kg-1 in synthetic wastewater and soil, respectively. The maximum removal of pollutant from wastewater in samples containing laccase-zeolite and laccase-montmorillonite complexes were 99 and 93.3%, respectively, which occurred at 4 h incubation compared with 6 h for free laccase. The maximum removal of pollutant from soil was observed for all treatments after 16 h of incubation. The maximum removal for samples containing free laccase, laccase-zeolite, and laccase-montmorillonite complexes were 98.5%, 98.6%, and 90.4%, respectively. Control sample also showed maximum removal of 35.8%. In general, application of laccase-zeolite complexes in aqueous environment, and these complexes and free laccases in soil was found very effective in degradation of 2,4-DNP. Hence, the use of laccase, especially immobilized laccases, for removal of 2,4-DNP from environment is promising.


Subject(s)
Laccase , Water Purification , 2,4-Dinitrophenol , Enzymes, Immobilized , Soil , Wastewater
5.
Int J Phytoremediation ; 20(7): 643-649, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29039991

ABSTRACT

It was found that using chelating agents increases the efficiency of heavy metal extraction, however, they may have negative effects on soil ecosystem quality. A pot experiment was conducted in a completely randomized design with three replications in order to evaluate the effect of EDTA and Olive Husk Extract (OHE) on some chemical and biological properties of the Pb-contaminated soil. The experimental treatments included EDTA (2 g Na2EDTA salt per kg soil), OHE (2 g TDS of OHE per kg soil) and control (without the chelating agent). The results revealed that the EDTA and OHE treatments increased the Pb availability by 17.7% and 5.5% in comparison to the control treatment, respectively. Although EDTA was more effective in increasing the Pb availability but decreased the soil biological quality index (SBQI). The EDTA treatment significantly decreased the dehydrogenase (DH) activity and germination index (GI). The OHE application significantly increased the available-P, available-K, total N and organic carbon content by 339.92%, 40.79%, 20.9%, and 29.7% compared with control treatment, respectively. Furthermore, OHE considerably increased SBQI from 18.96 to 53.48. Compared to the control treatment higher values of soil respiration activity, DH activity, and carbon availability index (CAI) were observed in OHE treatment.


Subject(s)
Olea , Soil Pollutants/analysis , Biodegradation, Environmental , Chelating Agents/chemistry , Ecosystem , Edetic Acid/chemistry , Lead , Soil
6.
PLoS One ; 12(7): e0180663, 2017.
Article in English | MEDLINE | ID: mdl-28683144

ABSTRACT

Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III) reduction test could well display the effects of sulfamethoxazole (SMX) and oxytetracycline (OTC) antibiotics on soil biochemical activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Soil Microbiology , Biomass , Iran , Iron/chemistry , Oxidation-Reduction
7.
Water Environ Res ; 89(6): 519-526, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28545603

ABSTRACT

The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.


Subject(s)
Cadmium/chemistry , Ferric Compounds/chemistry , Shewanella putrefaciens/metabolism , Adsorption , Aluminum Silicates/chemistry , Biodegradation, Environmental , Clay , Minerals/chemistry , Oxygen , X-Ray Diffraction
8.
Environ Geochem Health ; 37(6): 997-1005, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25971375

ABSTRACT

Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.


Subject(s)
Aluminum Silicates/chemistry , Arsenic/metabolism , Shewanella putrefaciens/metabolism , Adsorption , Arsenic/chemistry , Bentonite/chemistry , Clay , Ferric Compounds/chemistry , Kaolin/chemistry , Oxidation-Reduction
9.
J Hazard Mater ; 273: 247-52, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24751490

ABSTRACT

This study investigated the effectiveness of 6 different types of naturally occurring manganese, aluminum and iron oxides for stabilization of As and Sb in a calcareous soil spiked with 50mgkg(-1) of As or Sb and two dosages of treatments (2% and 5%). The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction, single step extraction with DTPA and Simplified Bioaccessibility Extraction Test (SBET) for estimation of bioaccessible fraction of As and Sb in soil and a greenhouse experiment using barley as the test crop. The results showed that Fe-associated and carbonate-bound fraction of As and Sb were predominant fractions. However, the amounts of labile fractions were higher in As contaminated soils, whereas the percentage of Sb associated with crystalline Fe-oxide and residual fractions were higher. The results revealed that application of natural metal oxides reduced DTPA and SBET extractable amounts and plant uptake of As and Sb. After application of amendments, the exchangeable fraction of As decreased dramatically by up to 82% while Sb exchangeable fraction decreased by up to 60% depending upon the additive. The results of chemical extractions and plant uptake confirmed that Sb had lower bioavailability, compared with As.


Subject(s)
Arsenic/chemistry , Metals/chemistry , Oxides/chemistry , Soil Pollutants/chemistry , Arsenic/metabolism , Environmental Restoration and Remediation/methods , Gastric Juice/chemistry , Hordeum/metabolism , Metals/metabolism
10.
Bioresour Technol ; 101(2): 551-4, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19736005

ABSTRACT

Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).


Subject(s)
Phosphorus/chemistry , Soil , Sulfur , Thiobacillus/metabolism , Analysis of Variance , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...