Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2313911121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527203

ABSTRACT

Climate change persists as a pressing global issue due to high greenhouse gas emissions from fossil fuel-based energy sources. A transition to a greener energy matrix combined with carbon offsetting is imperative to mitigate the rate at which global temperature ascends. While countries have deployed faith in green hydrogen to accelerate worldwide decarbonization efforts, the concurrent rise of blockchain-operated crypto-applications, such as bitcoin, has exacerbated climate change concerns. In this study, we propose technological solutions that combine the green hydrogen infrastructure with bitcoin mining operations to catalyze environmental and socioeconomic sustainability in climate change mitigation strategies. Since the present state of crypto-operations undeniably contributes to worldwide carbon emissions, it becomes vital to explore opportunities for harnessing the widespread enthusiasm for bitcoin as an aid toward a sustainable and climate-friendly future. Our findings reveal that green hydrogen production, paired with crypto-operations, can accelerate the deployment of solar and wind power capacities to boost conventional mitigation frameworks. Specifically, leveraging the economic potential derived from green hydrogen and bitcoin for incremental investment in renewable energy penetration, this dynamic duo can enable capacity expansions of up to 25.5% and 73.2% for solar and wind power installations. Therefore, the proposed technological solutions that leverage green hydrogen and bitcoin mining, bolstered with appropriate policy interventions, can not only strengthen renewable power generation and carbon offsetting capacities but also contribute significantly to achieving climate sustainability.

2.
Proc Natl Acad Sci U S A ; 120(29): e2303109120, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37428917

ABSTRACT

The world is facing a formidable climate predicament due to elevated greenhouse gas (GHG) emissions from fossil fuels. The preceding decade has also witnessed a dramatic surge in blockchain-based applications, constituting yet another substantial energy consumer. Nonfungible tokens (NFTs) are one such application traded on Ethereum (ETH) marketplaces that have raised concerns about their climate impacts. The transition of ETH from proof of work (PoW) to proof of stake (PoS) is a step toward reducing the carbon footprint of the NFT sector. However, this alone will not address the climate impacts of the growing blockchain industry. Our analysis indicates that NFTs can cause yearly GHG emissions of up to 18% of the peak under the energy-intensive PoW algorithm. This results in a significant carbon debt of 4.56 Mt CO2-eq by the end of this decade, equivalent to CO2 emissions from a 600-MW coal-fired power plant in 1 y which would meet residential power demand in North Dakota. To mitigate the climate impact, we propose technological solutions to sustainably power the NFT sector using unutilized renewable energy sources in the United States. We find that 15% utilization of curtailed solar and wind power in Texas or 50 MW of potential hydropower from existing nonpowered dams can support the exponential growth of NFT transactions. In summary, the NFT sector has the potential to generate significant GHG emissions, and measures are necessary to mitigate its climate impact. The proposed technological solutions and policy support can help promote climate-friendly development in the blockchain industry.

3.
Sci Adv ; 9(24): eadg6740, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37315136

ABSTRACT

Recent global logistics and geopolitical challenges draw attention to the potential raw material shortages for electric vehicle (EV) batteries. Here, we analyze the long-term energy and sustainability prospects to ensure a secure and resilient midstream and downstream value chain for the U.S. EV battery market amid uncertain market expansion and evolving battery technologies. With current battery technologies, reshoring and ally-shoring the midstream and downstream EV battery manufacturing will reduce the carbon footprint by 15% and energy use by 5 to 7%. While next-generation cobalt-free battery technologies will achieve up to 27% carbon emission reduction, transitioning to 54% less carbon-intensive blade lithium iron phosphate may diminish the mitigation benefits of supply chain restructuring. Our findings underscore the importance of adopting nickel from secondary sources and nickel-rich ores. However, the advantages of restructuring the U.S. EV battery supply chain depend on projected battery technology advancements.

SELECTION OF CITATIONS
SEARCH DETAIL
...