Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(29): 6620-6629, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37462354

ABSTRACT

Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V-1 s-1 at 295 K and increasing gradually to ∼13 cm2 V-1 s-1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.

2.
J Phys Chem C Nanomater Interfaces ; 125(43): 23968-23975, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34765075

ABSTRACT

Many colloidal quantum dot (QD)-based devices involve charging of the QD, either via intentional electronic doping or via electrical charge injection or photoexcitation. Previous research has shown that this charging can give rise to undesirable electrochemical surface reactions, leading to the formation of localized in-gap states. However, little is known about the factors that influence the stability of charged QDs against surface oxidation or reduction. Here, we use density functional theory to investigate the effect of various ligands and solvents on the reduction of surface Cd in negatively charged CdSe QDs. We find that X-type ligands can lead to significant shifts in the energy of the band edges but that the in-gap state related to reduced surface Cd is shifted in the same direction. As a result, shifting the band edges to higher energies does not necessarily lead to less stable electron charging. However, subtle changes in the local electrostatic environment lead to a clear correlation between the position of the in-gap state in the bandgap and the energy gained upon surface reduction. Binding ligands directly to the Cd sites most prone to reduction was found to greatly enhance the stability of the electron charged QDs. We find that ligands bind much more weakly after reduction of the Cd site, leading to a loss in binding energy that makes charge localization no longer energetically favorable. Lastly, we show that increasing the polarity of the solvent also increases the stability of QDs charged with electrons. These results highlight the complexity of surface reduction reactions in QDs and provide valuable strategies for improving the stability of charged QDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...