Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 476(2236): 20190866, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32398943

ABSTRACT

Scattering of waves as a result of a vertical array of equally spaced cracks on a square lattice is studied. The convenience of Floquet periodicity reduces the study to that of scattering of a specific wave-mode from a single crack in a waveguide. The discrete Green's function, for the waveguide, is used to obtain the semi-analytical solution for the scattering problem in the case of finite cracks whereas the limiting case of semi-infinite cracks is tackled by an application of the Wiener-Hopf technique. Reflectance and transmittance of such an array of cracks, in terms of incident wave parameters, is analysed. Potential applications include construction of tunable atomic-scale interfaces to control energy transmission at different frequencies.

2.
Proc Math Phys Eng Sci ; 476(2235): 20190686, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269488

ABSTRACT

A semi-infinite crack in an infinite square lattice is subjected to a wave coming from infinity, thereby leading to its scattering by the crack surfaces. A partially damaged zone ahead of the crack tip is modelled by an arbitrarily distributed stiffness of the damaged links. While an open crack, with an atomically sharp crack tip, in the lattice has been solved in closed form with the help of the scalar Wiener-Hopf formulation (Sharma 2015 SIAM J. Appl. Math., 75, 1171-1192 (doi:10.1137/140985093); Sharma 2015 SIAM J. Appl. Math. 75, 1915-1940. (doi:10.1137/15M1010646)), the problem considered here becomes very intricate depending on the nature of the damaged links. For instance, in the case of a partially bridged finite zone it involves a 2 × 2 matrix kernel of formidable class. But using an original technique, the problem, including the general case of arbitrarily damaged links, is reduced to a scalar one with the exception that it involves solving an auxiliary linear system of N × N equations, where N defines the length of the damage zone. The proposed method does allow, effectively, the construction of an exact solution. Numerical examples and the asymptotic approximation of the scattered field far away from the crack tip are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...