Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 61(3): 251-63, 2010.
Article in English | MEDLINE | ID: mdl-20172034

ABSTRACT

INTRODUCTION: QT interval assessment by telemetry has become one of the most useful models in testing strategies adopted for detection of drug induced QT prolongation in non-clinical safety pharmacology studies. This study reports experimental data showing that the autonomic nervous system might influence drug induced QT prolongation. METHODS: Animals were instrumented with telemetric transmitters and epicardial ECG leads. Effects on QT interval of reference drugs such as thioridazine and terfenadine were analysed with different approaches, the Holzgrefe's probabilistic method, the QT shift method and an individual analysis of beat-to-beat QT/RR pair distribution visualised as points-cloud. RESULTS: Two cases of unexpected absence of QT interval prolongation are reported with thioridazine and terfenadine in conscious beagle dogs under conditions of concomitant tachycardia. The pro-arrhythmic properties of these two molecules were unmasked by co-treatment with sympatholytic agents, atenolol and clonidine respectively suggesting that sympathetic activation and/or parasympathetic withdrawal might impair a drug induced QT prolongation. DISCUSSION: The apparent absence of changes in the QT interval due to novel drug candidates should be interpreted cautiously under conditions of concomitant tachycardia or elevated heart rate levels in non-clinical safety studies.


Subject(s)
Autonomic Nervous System/physiopathology , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Animals , Autonomic Nervous System/drug effects , Dogs , Electrocardiography/drug effects , Female , Long QT Syndrome/diagnosis , Male , Retrospective Studies , Terfenadine/pharmacology , Terfenadine/toxicity , Thioridazine/pharmacology , Thioridazine/toxicity
2.
J Pharmacol Toxicol Methods ; 59(2): 73-85, 2009.
Article in English | MEDLINE | ID: mdl-19135537

ABSTRACT

INTRODUCTION: Drug-induced QT interval prolongation is a major concern in new drug candidate development. This study presents a method of assessment of drug-induced QT interval prolongation without need for QT correction in conscious Beagle dogs and Cynomolgus monkeys monitored by telemetry. Accuracy and reliability are analysed by comparison with a reference QT correction method (Holzgrefe) from experiments performed with reference substances terfenadine, thioridazine and sotalol. METHODS: The QT shift method principle is assessment of any drug-induced QT interval shift directly from the individual QT/RR relationship. The individual QT/RR relationship is built from a treatment-free 24-hour recording period. QT and RR intervals are determined from a beat-to-beat analysis. A probabilistic method is used to define the individual QT/RR relationships. Checks were performed to compare results obtained with the QT shift method and the QT correction methods. The robustness of the QT shift method was tested under various conditions of drug-induced heart rate change (i.e. normal, bradycardia and tachycardia). RESULTS: The extent of agreement with the used reference QT correction method, Holzgrefe formula, was excellent (3-4 ms) in both animal species under the various drug induced effects on heart rate. The statistical sensitivity threshold for detection of QT prolongation according to a standard safety pharmacology study design was 7-8 ms. DISCUSSION: When combined with the probabilistic determination of individual QT/RR relationships, this simple method provides a direct assessment of a drug-induced effect on QT interval, without any curve fitting or application of correction formula. Despite noticeably different shapes in QT/RR relationships, the QT shift method is applicable to both Beagle dogs and Cynomolgus monkeys. It is likely that the QT shift method will be particularly helpful in problematic cases, enabling detection of drug-induced prolongation of less than 10 ms.


Subject(s)
Drug Evaluation, Preclinical/methods , Electrocardiography/instrumentation , Electrocardiography/standards , Heart Rate/physiology , Long QT Syndrome/chemically induced , Animals , Anti-Arrhythmia Agents/adverse effects , Anti-Arrhythmia Agents/pharmacology , Dogs , Dopamine Antagonists/adverse effects , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Electrocardiography/drug effects , Female , Heart Rate/drug effects , Histamine H1 Antagonists, Non-Sedating/adverse effects , Histamine H1 Antagonists, Non-Sedating/pharmacology , Macaca fascicularis , Male , Models, Statistical , Phenethylamines/adverse effects , Phenethylamines/pharmacology , Reference Standards , Sensitivity and Specificity , Sotalol/adverse effects , Sotalol/pharmacology , Sulfonamides/adverse effects , Sulfonamides/pharmacology , Telemetry , Terfenadine/adverse effects , Terfenadine/pharmacology , Thioridazine/adverse effects , Thioridazine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...