Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113826, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38412093

ABSTRACT

Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations.


Subject(s)
Adenocarcinoma , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Mutation/genetics , Genomics
2.
Nat Biotechnol ; 38(1): 97-107, 2020 01.
Article in English | MEDLINE | ID: mdl-31919445

ABSTRACT

Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.


Subject(s)
Algorithms , Neoplasms/pathology , Clone Cells , Computer Simulation , DNA Copy Number Variations/genetics , Gene Dosage , Genome , Humans , Mutation/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Reference Standards
3.
BMC Bioinformatics ; 17(1): 401, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27716034

ABSTRACT

BACKGROUND: Visualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ . RESULTS: VennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation. CONCLUSIONS: VennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact Paul.Boutros@oicr.on.ca.


Subject(s)
Computational Biology/methods , Computer Graphics , Data Interpretation, Statistical , Software , Documentation , Humans , Internet , User-Computer Interface
4.
BMC Bioinformatics ; 17: 305, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27516195

ABSTRACT

BACKGROUND: It is extremely common to need to select a subset of reads from a BAM file based on their specific properties. Typically, a user unpacks the BAM file to a text stream using SAMtools, parses and filters the lines using AWK, then repacks them using SAMtools. This process is tedious and error-prone. In particular, when working with many columns of data, mix-ups are common and the bit field containing the flags is unintuitive. There are several libraries for reading BAM files, such as Bio-SamTools for Perl and pysam for Python. Both allow access to the BAM's read information and can filter reads, but require substantial boilerplate code; this is high overhead for mostly ad hoc filtering. RESULTS: We have created a query language that gathers reads using a collection of predicates and common logical connectives. Queries run faster than equivalents and can be compiled to native code for embedding in larger programs. CONCLUSIONS: BAMQL provides a user-friendly, powerful and performant way to extract subsets of BAM files for ad hoc analyses or integration into applications. The query language provides a collection of predicates beyond those in SAMtools, and more flexible connectives.


Subject(s)
Software , Base Sequence , Chromosomes/genetics , Internet , Mitochondria/genetics , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...