Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 99(9): 092502, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17931001

ABSTRACT

The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

2.
Phys Rev Lett ; 88(15): 152501, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11955192

ABSTRACT

The latest generation gamma-ray detection system, GAMMASPHERE, coupled with the Microball charged-particle detector, has made possible a new class of nuclear lifetime measurement. For the first time differential lifetime measurements free from common systematic errors for over 15 different nuclei ( >30 rotational bands in various isotopes of Ce, Pr, Nd, Pm, and Sm) have been extracted at high spin within a single experiment. This comprehensive study establishes the effective single-particle transition quadrupole moments in the A approximately 135 light rare-earth region. Detailed comparisons are made with theoretical calculations using the self-consistent cranked mean-field theory which convincingly demonstrates the validity of the additivity of single-particle quadrupole moments in this mass region.

3.
Article in English | MEDLINE | ID: mdl-11969765

ABSTRACT

The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the resulting recurrence plots and correlation dimensions indicates regular motion for the isoscalar mode, and chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...