Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Med ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783139

ABSTRACT

Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children's hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung-immune system-microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes.

2.
Transplant Cell Ther ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38583802

ABSTRACT

Although unrelated-donor (URD) hematopoietic cell transplantation (HCT) is associated with many toxicities, a detailed analysis of adverse events, as defined by the Common Terminology Criteria for Adverse Events (CTCAE), has not previously been curated. This represents a major unmet need, especially as it relates to assessing the safety of novel agents. We analyzed a detailed AE database from the "ABA2" randomized, double-blind, placebo-controlled clinical trial of abatacept for acute graft-versus-host disease (aGVHD) prevention, for which the FDA mandated a detailed AE assessment through Day +180, and weekly neutrophil and platelet counts through Day +100. These were analyzed for their relationship to key transplant outcomes, with a major focus on the impact of aGVHD on the development/severity of AEs. A total of 2102 AEs and 1816 neutrophil/platelet counts were analyzed from 142 8/8-HLA-matched URD HCT recipients on ABA2 (placebo cohort, n = 69, abatacept cohort, n = 73). This analysis resulted in 2 major observations. (1) Among graft source, conditioning intensity, age, and Grade 2 to 4 aGVHD, only aGVHD impacted Grade 3 to 5 AE acquisition after the first month post-transplant. (2) The development of Grade 3 to 4 aGVHD was associated with thrombocytopenia. We have created a detailed resource for the transplant community by which to contextualize clinical toxicities after transplant. It has identified aGVHD as a major driver of post-HCT Grade 3 to 5 AEs, and underscored a link between aGVHD and thrombocytopenia. This establishes a critical safety framework upon which the impact of novel post-transplant aGVHD therapeutics should be evaluated. This trial was registered at www.clinicaltrials.gov (#NCT01743131).

3.
Bone Marrow Transplant ; 59(5): 680-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38383714

ABSTRACT

Chronic graft-versus-host-disease (cGVHD) is divided into two subtypes: classic (absence of acute GVHD features) and overlap cGVHD ('ocGVHD'), in which both chronic and acute GVHD clinical features are present simultaneously. While worse outcomes with ocGVHD have been reported, there are few recent analyses. We performed a secondary analysis of data from the ABA2 trial (N = 185), in which detailed GVHD data were collected prospectively and systematically adjudicated. Analyses included cumulative incidence of classic versus ocGVHD, their specific organ manifestations, global disease severity scores, non-relapse mortality (NRM), disease-free survival (DFS) and overall survival (OS) in these two cGVHD subtypes. Of 92 patients who developed cGVHD, 35 were classified as ocGVHD. The 1-year cumulative incidence, organ involvement, and global severity of classic and ocGVHD were similar between ABA2 patients receiving CNI/MTX+placebo and CNI/MTX+abatacept; thus, cohorts were combined for ocGVHD evaluation. This analysis identified ocGVHD as having significantly higher severity at presentation and at maximum global severity compared to classic cGVHD. OS and DFS were significantly lower for ocGVHD versus classic cGVHD. OcGVHD is associated with increased cGVHD severity scores, and is associated with decreased OS and DFS compared to classic cGVHD, underscoring the high risks with this cGVHD subtype.


Subject(s)
Graft vs Host Disease , Humans , Graft vs Host Disease/mortality , Male , Female , Chronic Disease , Adult , Middle Aged , Disease-Free Survival , Hematopoietic Stem Cell Transplantation/adverse effects , Survival Rate , Aged
4.
Transplant Cell Ther ; 30(5): 534.e1-534.e13, 2024 May.
Article in English | MEDLINE | ID: mdl-38342136

ABSTRACT

The use of reduced-intensity conditioning (RIC) regimens has increased in an effort to minimize hematopoietic stem cell transplantation (HCT) end-organ toxicity, including gonadal toxicity. We aimed to describe the incidence of fertility potential and gonadal function impairment in adolescent and young adult survivors of HCT and to identify risk factors (including conditioning intensity) for impairment. We performed a multi-institutional, international retrospective cohort study of patients age 10 to 40 years who underwent first allogeneic HCT before December 1, 2019, and who were alive, in remission, and available for follow-up at 1 to 2 years post-HCT. For females, an AMH level of ≥.5 ng/mL defined preserved fertility potential; an AMH level of ≥.03 ng/mL was considered detectable. Gonadal failure was defined for females as an elevated follicle-stimulating hormone (FSH) level >30 mIU/mL with an estradiol (E2) level <17 pg/mL or current use of hormone replacement therapy (regardless of specific indication or intent). For males, gonadal failure was defined as an FSH level >10.4 mIU/mL or current use of hormone replacement therapy. A total of 326 patients (147 females) were available for analysis from 17 programs (13 pediatric, 4 adult). At 1 to 2 years post-HCT, 114 females (77.6%) had available FSH and E2 levels and 71 (48.3%) had available AMH levels. FSH levels were reported for 125 males (69.8%). Nearly all female HCT recipients had very low levels of AMH. One of 45 (2.2%) recipients of myeloablative conditioning (MAC) and four of 26 (15.4%) recipients of reduced-intensity conditioning (RIC) (P = .06) had an AMH ≥.5 ng/m, and 8 of 45 MAC recipients (17.8%) and 12 of 26 RIC recipients (46.2%) (P = .015) had a detectable AMH level. Total body irradiation (TBI) dose and cyclophosphamide equivalent dose (CED) were not associated with detectable AMH. The incidence of female gonadal hormone failure was 55.3%. In univariate analysis, older age at HCT was associated with greater likelihood of gonadal failure (median age, 17.6 versus 13.9; P < .0001), whereas conditioning intensity (RIC versus MAC), TBI, chronic graft-versus-host disease requiring systemic therapy, and CED were not significantly associated with gonadal function. In multivariable analysis, age remained statistically significant (odds ratio [OR]. 1.11; 95% confidence interval [CI], 1.03 to 1.22) for each year increase; P = .012), Forty-four percent of the males had gonadal failure. In univariate analysis, older age (median, 16.2 years versus 14.4 years; P = .0005) and TBI dose (P = .002) were both associated with gonadal failure, whereas conditioning intensity (RIC versus MAC; P = .06) and CED (P = .07) were not statistically significant. In multivariable analysis, age (OR, 1.16; 95% CI, 1.06-1.27 for each year increase; P = .0016) and TBI ≥600 cGy (OR, 6.23; 95% CI, 2.21 to 19.15; P = .0008) remained significantly associated with gonadal failure. Our data indicate that RIC does not significantly mitigate the risk for gonadal failure in females or males. Age at HCT and (specifically in males) TBI use seem to be independent predictors of post-transplantation gonadal function and fertility status. All patients should receive pre-HCT infertility counseling and be offered appropriate fertility preservation options and be screened post-HCT for gonadal failure.


Subject(s)
Hematopoietic Stem Cell Transplantation , Transplantation Conditioning , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Female , Male , Adult , Adolescent , Child , Retrospective Studies , Transplantation Conditioning/adverse effects , Young Adult , Fertility/physiology , Survivors/statistics & numerical data , Anti-Mullerian Hormone/blood , Gonads/physiology , Risk Factors
5.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077035

ABSTRACT

Lung injury is a major determinant of survival after pediatric hematopoietic cell transplantation (HCT). A deeper understanding of the relationship between pulmonary microbes, immunity, and the lung epithelium is needed to improve outcomes. In this multicenter study, we collected 278 bronchoalveolar lavage (BAL) samples from 229 patients treated at 32 children's hospitals between 2014-2022. Using paired metatranscriptomes and human gene expression data, we identified 4 patient clusters with varying BAL composition. Among those requiring respiratory support prior to sampling, in-hospital mortality varied from 22-60% depending on the cluster (p=0.007). The most common patient subtype, Cluster 1, showed a moderate quantity and high diversity of commensal microbes with robust metabolic activity, low rates of infection, gene expression indicating alveolar macrophage predominance, and low mortality. The second most common cluster showed a very high burden of airway microbes, gene expression enriched for neutrophil signaling, frequent bacterial infections, and moderate mortality. Cluster 3 showed significant depletion of commensal microbes, a loss of biodiversity, gene expression indicative of fibroproliferative pathways, increased viral and fungal pathogens, and high mortality. Finally, Cluster 4 showed profound microbiome depletion with enrichment of Staphylococci and viruses, gene expression driven by lymphocyte activation and cellular injury, and the highest mortality. BAL clusters were modeled with a random forest classifier and reproduced in a geographically distinct validation cohort of 57 patients from The Netherlands, recapitulating similar cluster-based mortality differences (p=0.022). Degree of antibiotic exposure was strongly associated with depletion of BAL microbes and enrichment of fungi. Potential pathogens were parsed from all detected microbes by analyzing each BAL microbe relative to the overall microbiome composition, which yielded increased sensitivity for numerous previously occult pathogens. These findings support personalized interpretation of the pulmonary microenvironment in pediatric HCT, which may facilitate biology-targeted interventions to improve outcomes.

6.
Blood ; 142(8): 700-710, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37319437

ABSTRACT

In the ABA2 study, the T-cell costimulation blockade agent, abatacept, was safe and effective in preventing acute graft-versus-host disease (aGVHD) after unrelated-donor hematopoietic cell transplant (HCT), leading to US Food and Drug Administration approval. Here, we performed a determination of abatacept pharmacokinetics (PK), which enabled an examination of how abatacept exposure-response relationships affected clinical outcomes. We performed a population PK analysis of IV abatacept using nonlinear mixed-effect modeling and assessed the association between abatacept exposure and key transplant outcomes. We tested the association between the trough after dose 1 (Ctrough_1) and grade (GR) 2 or 4 aGVHD (GR2-4 aGVHD) through day +100. An optimal Ctrough_1 threshold was identified via recursive partitioning and classification tree analysis. This demonstrated that abatacept PK was characterized by a 2-compartment model with first-order elimination. The ABA2 dosing regimen was based on previous work targeting a steady-state abatacept trough of 10 µg/mL. However, a higher Ctrough_1 (≥39 µg/mL, attained in ∼60% of patients on ABA2) was associated with a favorable GR2-4 aGVHD risk (hazard ratio, 0.35; 95% confidence interval, 0.19-0.65; P < .001), with a Ctrough_1 <39 µg/mL associated with GR2-4 aGVHD risk indistinguishable from placebo (P = .37). Importantly, no significant association was found between Ctrough_1 and key safety indicators, including relapse, and cytomegalovirus or Epstein-Barr virus viremia. These data demonstrate that a higher abatacept Ctrough_1 (≥39 µg/mL) was associated with a favorable GR2-4 aGVHD risk, without any observed exposure-toxicity relationships. This trial was registered at www.clinicaltrials.gov as #NCT01743131.


Subject(s)
Epstein-Barr Virus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Abatacept/adverse effects , Epstein-Barr Virus Infections/etiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human
7.
Transplant Cell Ther ; 29(6): 380.e1-380.e9, 2023 06.
Article in English | MEDLINE | ID: mdl-36990222

ABSTRACT

Consolidation with autologous hematopoietic stem cell transplantation (HSCT) has improved survival for patients with central nervous system tumors (CNSTs). The impact of the autologous graft CD34+ dose on patient outcomes is unknown. We wanted to analyze the relationship between CD34+ dose, total nucleated cell (TNC) dose, and clinical outcomes, including overall survival (OS), progression-free survival (PFS), relapse, non-relapse mortality (NRM), endothelial-injury complications (EIC), and time to neutrophil engraftment in children undergoing autologous HSCT for CNSTs. A retrospective analysis of the CIBMTR database was performed. Children aged <10 years who underwent autologous HSCT between 2008 to 2018 for an indication of CNST were included. An optimal cut point was identified for patient age, CD34+ cell dose, and TNC, using the maximum likelihood method and PFS as an endpoint. Univariable analysis for PFS, OS, and relapse was described using the Kaplan-Meier estimator. Cox models were fitted for PFS and OS outcomes. Cause-specific hazards models were fitted for relapse and NRM. One hundred fifteen patients met the inclusion criteria. A statistically significant association was identified between autograft CD34+ content and clinical outcomes. Children receiving >3.6×106/kg CD34+ cells experienced superior PFS (p = .04) and OS (p = .04) compared to children receiving ≤3.6 × 106/kg. Relapse rates were lower in patients receiving >3.6 × 106/kg CD34+ cells (p = .05). Higher CD34+ doses were not associated with increased NRM (p = .59). Stratification of CD34+ dose by quartile did not reveal any statistically significant differences between quartiles for 3-year PFS (p = .66), OS (p = .29), risk of relapse (p = .57), or EIC (p = .87). There were no significant differences in patient outcomes based on TNC, and those receiving a TNC >4.4 × 108/kg did not experience superior PFS (p = .26), superior OS (p = .14), reduced risk of relapse (p = .37), or reduced NRM (p = .25). Children with medulloblastoma had superior PFS (p < .001), OS (p = .01), and relapse rates (p = .001) compared to those with other CNS tumor types. Median time to neutrophil engraftment was 10 days versus 12 days in the highest and lowest infused CD34+ quartiles, respectively. For children undergoing autologous HSCT for CNSTs, increasing CD34+ cell dose was associated with significantly improved OS and PFS, and lower relapse rates, without increased NRM or EICs.


Subject(s)
Central Nervous System Neoplasms , Hematopoietic Stem Cell Transplantation , Humans , Child , Retrospective Studies , Autografts/chemistry , Neoplasm Recurrence, Local/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Antigens, CD34/analysis , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/etiology
8.
Pharmaceutics ; 14(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432661

ABSTRACT

Fludarabine is a nucleoside analog with antileukemic and immunosuppressive activity commonly used in allogeneic hematopoietic cell transplantation (HCT). Several fludarabine population pharmacokinetic (popPK) and pharmacodynamic models have been published enabling the movement towards precision dosing of fludarabine in pediatric HCT; however, developed models have not been validated in a prospective cohort of patients. In this multicenter pharmacokinetic study, fludarabine plasma concentrations were collected via a sparse-sampling strategy. A fludarabine popPK model was evaluated and refined using standard nonlinear mixed effects modelling techniques. The previously described fludarabine popPK model well-predicted the prospective fludarabine plasma concentrations. Individuals who received model-based dosing (MBD) of fludarabine achieved significantly more precise overall exposure of fludarabine. The fludarabine popPK model was further improved by both the inclusion of fat-free mass instead of total body weight and a maturation function on fludarabine clearance. The refined popPK model is expected to improve dosing recommendations for children younger than 2 years and patients with higher body mass index. Given the consistency of fludarabine clearance and exposure across its multiple days of administration, therapeutic drug monitoring is not likely to improve targeted exposure attainment.

9.
Blood ; 140(24): 2556-2572, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35776909

ABSTRACT

We performed a prospective multicenter study of T-cell receptor αß (TCR-αß)/CD19-depleted haploidentical hematopoietic cell transplantation (HCT) in children with acute leukemia and myelodysplastic syndrome (MDS), to determine 1-year disease-free survival (DFS) and compare 2-year outcomes with recipients of other donor cell sources. Fifty-one patients aged 0.7 to 21 years were enrolled; donors were killer immunoglobulin-like receptor (KIR) favorable based on ligand mismatch and/or high B content. The 1-year DFS was 78%. Superior 2-year DFS and overall survival (OS) were noted in patients <10 years of age, those treated with reduced toxicity conditioning (RTC) rather than myeloablative conditioning, and children with minimal residual disease <0.01% before HCT. Multivariate analysis comparing the KIR-favorable haploidentical cohort with controls showed similar DFS and OS compared with other donor cell sources. Multivariate analysis also showed a marked decrease in the risk of grades 2 to 4 and 3 to 4 acute graft versus host disease (aGVHD), chronic GVHD, and transplant-related mortality vs other donor cell sources. Ethnic and racial minorities accounted for 53% of enrolled patients, and data from a large cohort of recipients/donors screened for KIR showed that >80% of recipients had a KIR-favorable donor by our definition, demonstrating that this approach is broadly applicable to groups often unable to find donors. This prospective, multicenter study showed improved outcomes using TCR-αß/CD19-depleted haploidentical donors using RTC for children with acute leukemia and MDS. Randomized trials comparing this approach with matched unrelated donors are warranted. This trial was registered at https://clinicaltrials.gov as #NCT02646839.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Child , Prospective Studies , Transplantation Conditioning , Graft vs Host Disease/etiology , Receptors, KIR , Myelodysplastic Syndromes/therapy , Leukemia, Myeloid, Acute/therapy , Antigens, CD19 , Receptors, Antigen, T-Cell, alpha-beta
11.
Blood Adv ; 5(1): 1-11, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33570619

ABSTRACT

Transplant-associated thrombotic microangiopathy (TA-TMA) is a severe complication of hematopoietic stem cell transplantation (HSCT). A single-center prospective screening study has shown that the incidence of TA-TMA is much higher than prior retrospective studies that did not systematically screen. These data have not been replicated in a multicenter study. Our objective was to determine the incidence and risk factors for TA-TMA and compare outcomes of pediatric HSCT patients with and without TA-TMA. Patients were prospectively screened for TA-TMA at participating centers using a simple to implement and inexpensive strategy from the start of the preparative regimen through day +100. TA-TMA was diagnosed if ≥4 of 7 laboratory/clinical markers diagnostic for TA-TMA were present concurrently or if tissue histology showed TA-TMA. A total of 614 patients (359 males; 58%) received prospective TA-TMA screening at 13 pediatric centers. TA-TMA was diagnosed in 98 patients (16%) at a median of 22 days (interquartile range, 14-44) posttransplant. Patients with TA-TMA had significantly increased bloodstream infections (38% [37/98] vs 21% [107/51], P ≤ .001), mean total hospitalization days (68; 95% confidence interval [CI], 63-74 vs 43; 95% CI, 41-45; P ≤ .001), and number of days spent in the intensive care unit (10.1; 95% CI, 6.4-14; vs 1.6; 95% CI, 1.1-2.2; P ≤ .001) in the first 100 days after HSCT compared with patients without TA-TMA. Overall survival was significantly higher in patients without TA-TMA (93%; 490/516) compared with patients with TA-TMA (78%; 76/98) (P ≤ .001). These data support the need for systematic screening for TA-TMA and demonstrate the feasibility and efficacy of an easy to implement strategy to do so.


Subject(s)
Hematopoietic Stem Cell Transplantation , Thrombotic Microangiopathies , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Incidence , Male , Prospective Studies , Retrospective Studies , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/epidemiology , Thrombotic Microangiopathies/etiology
12.
J Clin Oncol ; 39(17): 1865-1877, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33449816

ABSTRACT

PURPOSE: Severe (grade 3-4) acute graft-versus-host disease (AGVHD) is a major cause of death after unrelated-donor (URD) hematopoietic cell transplant (HCT), resulting in particularly high mortality after HLA-mismatched transplantation. There are no approved agents for AGVHD prevention, underscoring the critical unmet need for novel therapeutics. ABA2 was a phase II trial to rigorously assess safety, efficacy, and immunologic effects of adding T-cell costimulation blockade with abatacept to calcineurin inhibitor (CNI)/methotrexate (MTX)-based GVHD prophylaxis, to test whether abatacept could decrease AGVHD. METHODS: ABA2 enrolled adults and children with hematologic malignancies under two strata: a randomized, double-blind, placebo-controlled stratum (8/8-HLA-matched URD), comparing CNI/MTX plus abatacept with CNI/MTX plus placebo, and a single-arm stratum (7/8-HLA-mismatched URD) comparing CNI/MTX plus abatacept versus CNI/MTX CIBMTR controls. The primary end point was day +100 grade 3-4 AGVHD, with day +180 severe-AGVHD-free-survival (SGFS) a key secondary end point. Sample sizes were calculated using a higher type-1 error (0.2) as recommended for phase II trials, and were based on predicting that abatacept would reduce grade 3-4 AGVHD from 20% to 10% (8/8s) and 30% to 10% (7/8s). ABA2 enrolled 142 recipients (8/8s, median follow-up = 716 days) and 43 recipients (7/8s, median follow-up = 708 days). RESULTS: In 8/8s, grade 3-4 AGVHD was 6.8% (abatacept) versus 14.8% (placebo) (P = .13, hazard ratio = 0.45). SGFS was 93.2% (CNI/MTX plus abatacept) versus 82% (CNI/MTX plus placebo, P = .05). In the smaller 7/8 cohort, grade 3-4 AGVHD was 2.3% (CNI/MTX plus abatacept, intention-to-treat population), which compared favorably with a nonrandomized matched cohort of CNI/MTX (30.2%, P < .001), and the SGFS was better (97.7% v 58.7%, P < .001). Immunologic analysis revealed control of T-cell activation in abatacept-treated patients. CONCLUSION: Adding abatacept to URD HCT was safe, reduced AGVHD, and improved SGFS. These results suggest that abatacept may substantially improve AGVHD-related transplant outcomes, with a particularly beneficial impact on HLA-mismatched HCT.


Subject(s)
Abatacept/therapeutic use , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/methods , Adolescent , Adult , Aged , Child , Cyclosporine/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunosuppressive Agents/therapeutic use , Male , Methotrexate/therapeutic use , Middle Aged , Tacrolimus/therapeutic use , Young Adult
13.
Haematologica ; 106(7): 1839-1845, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32554562

ABSTRACT

With limited data comparing hematopoietic cell transplant outcomes between myeloablative total body irradiation (TBI) containing and non-TBI regimens in children with de novo acute myeloid leukemia, the aim of this study was to compare transplant-outcomes between these regimens. Cox regression models were used to compare transplant-outcomes after TBI and non-TBI regimens in 624 children transplanted between 2008 and 2016. Thirty two percent (n=199) received TBI regimens whereas 68% (n=425) received non-TBI regimens. Five-year non-relapse mortality was higher with TBI regimens (22% vs. 11%, p<0.0001) but relapse was lower (23% vs. 37%, p<0.0001) compared to non-TBI regimens. Consequently, overall (62% vs. 60%, p=1.00) and leukemia-free survival (55% vs. 52%, p=0.42) did not differ between treatment groups. Grade II-IV acute GVHD was higher with TBI regimens (56% vs. 27%, p<0.0001) but not chronic GVHD. The 3-year incidence of gonadal or growth hormone deficiency was higher with TBI regimens (24% vs. 8%, p<0.001) but there were no differences in late pulmonary, cardiac or renal impairment. In the absence of a survival advantage, the choice of TBI or non-TBI regimen merits careful consideration with the data favoring non-TBI regimens to limit the burden of morbidity associated with endocrine dysfunction.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Busulfan , Child , Cyclophosphamide , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Retrospective Studies , Transplantation Conditioning , Whole-Body Irradiation
14.
J Nanobiotechnology ; 14(1): 66, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27553039

ABSTRACT

BACKGROUND: Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palmitoleoyl moiety in the N-terminal domain. RESULTS: By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co-elutes with ND. In signaling assays, Wnt3a ND induced ß-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin(-) Sca-1(+) c-Kit(+) cells. Surprisingly, ND lacking Wnt3a contributed to Lin(-) Sca-1(+) c-Kit(+) cell expansion, an effect that was not mediated through ß-catenin. CONCLUSIONS: The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.


Subject(s)
Cell Culture Techniques/methods , Hematopoietic Stem Cells/drug effects , Nanostructures/chemistry , Wnt3A Protein/chemistry , Wnt3A Protein/pharmacology , Animals , Apolipoprotein A-I/metabolism , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Drosophila , Hematopoietic Stem Cells/cytology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...