Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Craniofac Surg ; 26(3): 663-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25974770

ABSTRACT

Reconstruction of bony craniofacial defects requires precise understanding of the anatomic relationships. The ideal reconstructive technique should be fast as well as economical, with minimal donor-site morbidity, and provide a lasting and aesthetically pleasing result. There are some circumstances in which a patient's own tissue is not sufficient to reconstruct defects. The development of sophisticated software has facilitated the manufacturing of patient-specific implants (PSIs). The aim of this study was to analyze the utility of polyether ether ketone (PEEK) PSIs for craniofacial reconstruction. We performed a retrospective chart review from July 2009 to July 2013 in patients who underwent craniofacial reconstruction using PEEK-PSIs using a virtual process based on computer-aided design and computer-aided manufacturing. A total of 6 patients were identified. The mean age was 46 years (16-68 y). Operative indications included cancer (n = 4), congenital deformities (n = 1), and infection (n = 1). The mean surgical time was 3.7 hours and the mean hospital stay was 1.5 days. The mean surface area of the defect was 93.4 ± 43.26 cm(2), the mean implant cost was $8493 ± $837.95, and the mean time required to manufacture the implants was 2 weeks. No major or minor complications were seen during the 4-year follow-up. We found PEEK implants to be useful in the reconstruction of complex calvarial defects, demonstrating a low complication rate, good outcomes, and high patient satisfaction in this small series of patients. Polyether ether ketone implants show promising potential and warrant further study to better establish the role of this technology in cranial reconstruction.


Subject(s)
Computer-Aided Design , Craniofacial Abnormalities/surgery , Ketones , Plastic Surgery Procedures/methods , Polyethylene Glycols , Prostheses and Implants , Adolescent , Adult , Aged , Benzophenones , Ether , Female , Humans , Male , Middle Aged , Polymers , Prosthesis Design , Retrospective Studies , Young Adult
2.
Wound Repair Regen ; 23(1): 14-21, 2015.
Article in English | MEDLINE | ID: mdl-25571764

ABSTRACT

Diabetic patients exhibit dysfunction of the normal wound healing process, leading to local ischemia by vascular occlusive disease as well as sustained increases in the proinflammatory cytokines and overproduction of reactive oxygen species (ROS). Of the many sources of ROS, the enzyme xanthine oxidase (XO) has been linked to overproduction of ROS in diabetic environment, and studies have shown that treatment with XO inhibitors decreases XO overactivity and XO-generated ROS. This study evaluates the role of XO in the diabetic wound and the impact of specifically inhibiting its activity on wound healing. Treatment of diabetic wounds with siXDH (xanthine dehydrogenase siRNA) decreased XDH mRNA expression by 51.6%, XO activity by 35.9%, ROS levels by 78.1%, pathologic wound burden by 31.5%, and accelerated wound healing by 7 days (23.3%). Polymerase chain reaction analysis showed that increased XO activity in wild-type wound may be due to XDH to XO conversion and/or XO phosphorylation, but not to gene transcription, whereas increased XO activity in diabetic wounds may also be from gene transcription. These results suggest that XO may be responsible for large proportion of elevated oxidative stress in the diabetic wound environment and that normalizing the metabolic activity of XO using targeted delivery of siXDH may decrease overproduction of ROS and accelerate wound healing in diabetic patients.


Subject(s)
Enzyme Inhibitors/pharmacology , NIH 3T3 Cells/metabolism , Oxidative Stress/drug effects , Purines/metabolism , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Xanthine Oxidase/antagonists & inhibitors , Animals , Cell Line , Cells, Cultured , Gene Expression , Homeostasis , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , RNA, Messenger , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...