Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37998577

ABSTRACT

Thalassemia represents one of the most common genetic disorders worldwide, characterized by defects in hemoglobin synthesis. The affected individuals suffer from malfunctioning of one or more of the four globin genes, leading to chronic hemolytic anemia, an imbalance in the hemoglobin chain ratio, iron overload, and ineffective erythropoiesis. Despite the challenges posed by this condition, recent years have witnessed significant advancements in diagnosis, therapy, and transfusion support, significantly improving the prognosis for thalassemia patients. This research empirically evaluates the efficacy of models constructed using classification methods and explores the effectiveness of relevant features that are derived using various machine-learning techniques. Five feature selection approaches, namely Chi-Square (χ2), Exploratory Factor Score (EFS), tree-based Recursive Feature Elimination (RFE), gradient-based RFE, and Linear Regression Coefficient, were employed to determine the optimal feature set. Nine classifiers, namely K-Nearest Neighbors (KNN), Decision Trees (DT), Gradient Boosting Classifier (GBC), Linear Regression (LR), AdaBoost, Extreme Gradient Boosting (XGB), Random Forest (RF), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM), were utilized to evaluate the performance. The χ2 method achieved accuracy, registering 91.56% precision, 91.04% recall, and 92.65% f-score when aligned with the LR classifier. Moreover, the results underscore that amalgamating over-sampling with Synthetic Minority Over-sampling Technique (SMOTE), RFE, and 10-fold cross-validation markedly elevates the detection accuracy for αT patients. Notably, the Gradient Boosting Classifier (GBC) achieves 93.46% accuracy, 93.89% recall, and 92.72% F1 score.

2.
Sensors (Basel) ; 21(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205885

ABSTRACT

Plant diseases can cause a considerable reduction in the quality and number of agricultural products. Guava, well known to be the tropics' apple, is one significant fruit cultivated in tropical regions. It is attacked by 177 pathogens, including 167 fungal and others such as bacterial, algal, and nematodes. In addition, postharvest diseases may cause crucial production loss. Due to minor variations in various guava disease symptoms, an expert opinion is required for disease analysis. Improper diagnosis may cause economic losses to farmers' improper use of pesticides. Automatic detection of diseases in plants once they emerge on the plants' leaves and fruit is required to maintain high crop fields. In this paper, an artificial intelligence (AI) driven framework is presented to detect and classify the most common guava plant diseases. The proposed framework employs the ΔE color difference image segmentation to segregate the areas infected by the disease. Furthermore, color (RGB, HSV) histogram and textural (LBP) features are applied to extract rich, informative feature vectors. The combination of color and textural features are used to identify and attain similar outcomes compared to individual channels, while disease recognition is performed by employing advanced machine-learning classifiers (Fine KNN, Complex Tree, Boosted Tree, Bagged Tree, Cubic SVM). The proposed framework is evaluated on a high-resolution (18 MP) image dataset of guava leaves and fruit. The best recognition results were obtained by Bagged Tree classifier on a set of RGB, HSV, and LBP features (99% accuracy in recognizing four guava fruit diseases (Canker, Mummification, Dot, and Rust) against healthy fruit). The proposed framework may help the farmers to avoid possible production loss by taking early precautions.


Subject(s)
Psidium , Artificial Intelligence , Fruit , Machine Learning , Plant Diseases
3.
Diagnostics (Basel) ; 12(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35054210

ABSTRACT

In medical imaging, the detection and classification of stomach diseases are challenging due to the resemblance of different symptoms, image contrast, and complex background. Computer-aided diagnosis (CAD) plays a vital role in the medical imaging field, allowing accurate results to be obtained in minimal time. This article proposes a new hybrid method to detect and classify stomach diseases using endoscopy videos. The proposed methodology comprises seven significant steps: data acquisition, preprocessing of data, transfer learning of deep models, feature extraction, feature selection, hybridization, and classification. We selected two different CNN models (VGG19 and Alexnet) to extract features. We applied transfer learning techniques before using them as feature extractors. We used a genetic algorithm (GA) in feature selection, due to its adaptive nature. We fused selected features of both models using a serial-based approach. Finally, the best features were provided to multiple machine learning classifiers for detection and classification. The proposed approach was evaluated on a personally collected dataset of five classes, including gastritis, ulcer, esophagitis, bleeding, and healthy. We observed that the proposed technique performed superbly on Cubic SVM with 99.8% accuracy. For the authenticity of the proposed technique, we considered these statistical measures: classification accuracy, recall, precision, False Negative Rate (FNR), Area Under the Curve (AUC), and time. In addition, we provided a fair state-of-the-art comparison of our proposed technique with existing techniques that proves its worthiness.

4.
Cyberpsychol Behav Soc Netw ; 22(7): 433-450, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31074639

ABSTRACT

Social media has taken an important place in the routine life of people. Every single second, users from all over the world are sharing interests, emotions, and other useful information that leads to the generation of huge volumes of user-generated data. Profiling users by extracting attribute information from social media data has been gaining importance with the increasing user-generated content over social media platforms. Meeting the user's satisfaction level for information collection is becoming more challenging and difficult. This is because of too much noise generated, which affects the process of information collection due to explosively increasing online data. Social profiling is an emerging approach to overcome the challenges faced in meeting user's demands by introducing the concept of personalized search while keeping in consideration user profiles generated using social network data. This study reviews and classifies research inferring users social profile attributes from social media data as individual and group profiling. The existing techniques along with utilized data sources, the limitations, and challenges are highlighted. The prominent approaches adopted include Machine Learning, Ontology, and Fuzzy logic. Social media data from Twitter and Facebook have been used by most of the studies to infer the social attributes of users. The studies show that user social attributes, including age, gender, home location, wellness, emotion, opinion, relation, influence, and so on, still need to be explored. This review gives researchers insights of the current state of literature and challenges for inferring user profile attributes using social media data.


Subject(s)
Data Collection/methods , Social Identification , Social Media , Female , Humans , Male , Personal Satisfaction
SELECTION OF CITATIONS
SEARCH DETAIL
...