Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 6(12): 1859-1869, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38093839

ABSTRACT

Prostate cancer is the third leading cause of cancer-related death in men in the United States. Taxane chemotherapy is a staple therapy for men with metastatic prostate cancer, yet the median survival is less than 2 years in this setting. New strategies are needed to overcome taxane resistance to improve patient survival. Fatty acid synthase (FASN) is overexpressed in many types of cancer, and several inhibitors have been designed in the past 30 years. Previously, we showed that the FASN inhibitor orlistat was able to synergize with taxanes in two established taxane-resistant (TxR) cell lines. In the current study, we investigated five FASN inhibitors-cerulenin, orlistat, triclosan, thiophenopyrimidine fasnall, and pyrazole derivative TVB-3166 for their potential to synergize with docetaxel (a microtubule stabilizer) and vinblastine (a microtubule destabilizer) in TxR cell lines. Orlistat, TVB-3166, and fasnall synergistically inhibited cell viability when combined with docetaxel and vinblastine in PC3-TxR and DU145-TxR cells. Confocal microscopy and immunoblot with an antidetyrosinated tubulin antibody demonstrated that enhanced microtubule stability was induced by the combined treatment of FASN inhibitors and docetaxel compared with docetaxel alone, while combinations of FASN inhibitors with vinblastine diminished microtubule stability compared to vinblastine alone.

2.
AAPS PharmSciTech ; 23(6): 195, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831684

ABSTRACT

Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.


Subject(s)
Nanoparticles , Spinal Cord Injuries , Drug Carriers/therapeutic use , Humans , Hydrogen Peroxide , Lactic Acid , Oxidative Stress , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Spinal Cord Injuries/drug therapy , alpha-Tocopherol
3.
Anal Chem ; 94(5): 2615-2624, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35073053

ABSTRACT

Bacterial infections are the leading cause of morbidity and mortality in the world, particularly due to a delay in treatment and misidentification of the bacterial species causing the infection. Therefore, rapid and accurate identification of these pathogens has been of prime importance. The conventional diagnostic techniques include microbiological, biochemical, and genetic analyses, which are time-consuming, require large sample volumes, expensive equipment, reagents, and trained personnel. In response, we have now developed a paper-based ratiometric fluorescent sensor array. Environment-sensitive fluorescent dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates fabricated using photolithography, upon interaction with bacterial cell envelopes, generate unique fluorescence response patterns. The stability and reproducibility of the sensor array response were thoroughly investigated, and the analysis procedure was refined for optimal performance. Using neural networks for response pattern analysis, the sensor was able to identify 16 bacterial species and recognize their Gram status with an accuracy rate greater than 90%. The paper-based sensor was stable for up to 6 months after fabrication and required 30 times lower dye and sample volumes as compared to the analogous solution-based sensor. Therefore, this approach opens avenues to a state-of-the-art diagnostic tool that can be potentially translated into clinical applications in low-resource environments.


Subject(s)
Bacteria , Bacterial Infections , Fluorescent Dyes , Humans , Reproducibility of Results , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...