Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Neurobiol Stress ; 30: 100620, 2024 May.
Article in English | MEDLINE | ID: mdl-38486879

ABSTRACT

Early development is characterized by dynamic transitions in brain maturation, which may be impacted by environmental factors. Here, we sought to determine the effects of social isolation from postweaning and during adolescence on reward behavior and dopaminergic signaling in male rats. Subjects were socially isolated or group housed at postnatal day 21. Three weeks later, extracellular dopamine concentrations were examined in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAc) during a feeding bout. Surprisingly, opposing effects were found in which increased mPFC dopamine concentrations were observed in group housed, but not isolated, rats. In stark contrast, increased dopamine levels were found in the NAc of isolated, but not group housed, rats. Moreover, the absence of an effect in the mPFC of the isolated rats could not be reversed by subsequent group housing, demonstrating the remarkable long-term effects on dopamine signaling dynamics. When provided a highly palatable food, the isolated subjects exhibited a dramatic increase in mPFC dopamine levels when the chocolate was novel, but no effects following chronic chocolate consumption. In contrast, the group housed subjects showed significantly increased dopamine levels only with chronic chocolate consumption. The dopamine changes were correlated with differences in behavioral measures. Importantly, the deficit in reward-related behavior during isolation could be reversed by microinjection of either dopamine or cocaine into the mPFC. Together, these data provide evidence that social isolation from postweaning and during adolescence alters reward-induced dopamine levels in a brain region-specific manner, which has important functional implications for reward-related behavior.

2.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
3.
bioRxiv ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398219

ABSTRACT

Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that have the same topology as the cell, are enriched in selected exosome cargo proteins, and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the exomap1 transgenic mouse model. In response to Cre recombinase, exomap1 mice express HsCD81mNG, a fusion protein between human CD81, the most highly enriched exosome protein yet described, and the bright green fluorescent protein mNeonGreen. As expected, cell type-specific expression of Cre induced the cell type-specific expression of HsCD81mNG in diverse cell types, correctly localized HsCD81mNG to the plasma membrane, and selectively loaded HsCD81mNG into secreted vesicles that have the size (~80 nm), topology (outside out), and content (presence of mouse exosome markers) of exosomes. Furthermore, mouse cells expressing HsCD81mNG released HsCD81mNG-marked exosomes into blood and other biofluids. Using high-resolution, single-exosome analysis by quantitative single molecule localization microscopy, we show here that that hepatocytes contribute ~15% of the blood exosome population whereas neurons contribute <1% of blood exosomes. These estimates of cell type-specific contributions to blood EV population are consistent with the porosity of liver sinusoidal endothelial cells to particles of ~50-300 nm in diameter, as well as with the impermeability of blood-brain and blood-neuron barriers to particles >5 nm in size. Taken together, these results establish the exomap1 mouse as a useful tool for in vivo studies of exosome biology, and for mapping cell type-specific contributions to biofluid exosome populations. In addition, our data confirm that CD81 is a highly-specific marker for exosomes and is not enriched in the larger microvesicle class of EVs.

4.
Pharmacol Res ; 187: 106600, 2023 01.
Article in English | MEDLINE | ID: mdl-36481259

ABSTRACT

Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.


Subject(s)
Cannabis , Dronabinol , Adolescent , Humans , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Mass Spectrometry , Aerosols/metabolism
5.
Nicotine Tob Res ; 24(8): 1150-1160, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35090174

ABSTRACT

INTRODUCTION: Although there has been a decrease in the prevalence of tobacco smoking, exposure to nicotine during pregnancy remains a substantial problem worldwide. Further, given the recent escalation in e-cigarette use and legalization of cannabis, it has become essential to understand the effects of nicotine and cannabinoid co-exposure during early developmental stages. AIMS AND METHODS: We systematically examined the effects of nicotine and/or THC prenatal exposure on cognitive behaviors in male and female offspring. Dams were exposed to nicotine vape or vehicle, and oral edible THC or vehicle, throughout pregnancy. Adolescent offspring were then tested in the prepulse inhibition test, novel object recognition task, and novelty suppressed feeding task. RESULTS: At birth, pups from mothers exposed to nicotine vape or oral THC exhibited reduced body weight, compared to control pups. Prenatal nicotine vape exposure resulted in a decreased baseline startle reactivity in adolescent male and female rats, and in females, enhanced sensorimotor gating in the prepulse inhibition test. Prenatal nicotine and THC co-exposure resulted in significant deficits in the prepulse inhibition test in males. Deficits in short-term memory were also found in males prenatally exposed to THC, either alone or with nicotine co-exposure, and in females exposed to THC alone. Finally, in males, a modest increase in anxiety-associated behaviors was found with THC or nicotine exposure in the latency to approach a novel palatable food. CONCLUSIONS: These studies demonstrate differential effects of prenatal exposure to e-cigarette nicotine vape and/or edible THC on cognitive function, with differing effects within male and female groups. IMPLICATIONS: These studies demonstrate an impact of nicotine, THC, or co-exposure during early developmental stages in utero on behavioral outcomes in adolescence. These findings have important translational implications given the continued use of nicotine and THC containing products by pregnant women worldwide, which can be applied to support healthcare and policy efforts restricting nicotine and THC use during pregnancy.


Subject(s)
Electronic Nicotine Delivery Systems , Prenatal Exposure Delayed Effects , Animals , Cognition , Dronabinol/pharmacology , Female , Humans , Male , Nicotine/adverse effects , Pregnancy , Rats
6.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-34876472

ABSTRACT

Cholinergic projections from the medial habenula (MHb) to the interpeduncular nucleus (IPN) have been studied for their complex contributions to nicotine addiction and have been implicated in nicotine reinforcement, aversion, and withdrawal. While it has been established that MHb cholinergic projections corelease glutamate, no direct evidence has demonstrated a role for this glutamate projection in nicotine consumption. In the present study, a novel floxed Slc17a7 [vesicular glutamate transporter 1 (VGLUT1)] mouse was generated and used to create conditional knock-out (cKO) mice that lack VGLUT1 in MHb cholinergic neurons. Loss of Slc17a7 expression in ventral MHb cholinergic neurons was validated using fluorescent in situ hybridization, and immunohistochemistry was used to demonstrate a corresponding reduction of VGLUT1 protein in cholinergic terminals in the IPN. We also used optogenetics-assisted electrophysiology to evoke EPSCs in IPN and observed a reduction of glutamatergic currents in the cKO, supporting the functional disruption of VGLUT1 in MHb to IPN synapses. cKO mice exhibited no gross phenotypic abnormalities and displayed normal thigmotaxis and locomotor behavior in the open-field assay. When trained to lever press for food, there was no difference between control and cKO. However, when tested in a nicotine self-administration procedure, we found that the loss of VGLUT1-mediated glutamate corelease led to increased responding for nicotine. These findings indicate that glutamate corelease from ventral MHb cholinergic neurons opposes nicotine self-administration, and provide additional support for targeting this synapse to develop potential treatments for nicotine addiction.


Subject(s)
Habenula , Interpeduncular Nucleus , Animals , In Situ Hybridization, Fluorescence , Mice , Nicotine , Nicotinic Agonists
7.
Front Behav Neurosci ; 15: 703748, 2021.
Article in English | MEDLINE | ID: mdl-34803621

ABSTRACT

Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1-/- or lynx2-/- knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1-/- mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2-/- mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2-/- mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.

8.
Environ Toxicol Pharmacol ; 86: 103656, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33838329

ABSTRACT

Evidence in humans suggests a correlation between nicotine smoking and severe respiratory symptoms with COVID-19 infection. In lung tissue, angiotensin-converting enzyme 2 (ACE2) appears to mechanistically underlie viral entry. Here, we investigated whether e-cigarette vapor inhalation alters ACE2 and nicotinic acetylcholine receptor (nAChR) expression in male and female mice. In male lung, nicotine vapor inhalation induced a significant increase in ACE2 mRNA and protein, but surprisingly, these differences were not found in females. Further, both vehicle and nicotine vapor inhalation downregulated α5 nAChR subunits in both sexes, while differences were not found in α7 nAChR subunit expression. Finally, blood ACE2 levels did not differ with exposure, indicating that blood sampling is not a sufficient indicator of lung ACE2 changes. Together, these data indicate a direct link between e-cigarette vaping and increased ACE2 expression in male lung tissue, which thereby reveals an underlying mechanism of increased vulnerability to coronavirus infection in individuals vaping nicotine.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Electronic Nicotine Delivery Systems , Lung/enzymology , Vaping/adverse effects , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Animals , DNA, Complementary/biosynthesis , Female , Lung/cytology , Male , Mice , Mice, Inbred C57BL , Nicotine/administration & dosage , Nicotine/pharmacology , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/biosynthesis , Sex Characteristics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
9.
Addict Biol ; 26(6): e13024, 2021 11.
Article in English | MEDLINE | ID: mdl-33624410

ABSTRACT

E-cigarettes, which deliver vaporized nicotine, have dramatically risen in popularity in recent years, despite many unanswered questions about safety, efficacy in reducing dependence, and overall impact on public health. Other factors, such as sex, also play an important role in determining behavioral and neurochemical responses to drugs of abuse. In these studies, we sought to develop a protocol for vaporized e-cigarette nicotine self-administration in rats, as a foundation to better understand the differing effects of nicotine exposure routes on behavior and physiological function. We report a novel method that elicits robust nicotine vapor self-administration in male and female rats. Our findings indicate that 5-mg/ml nicotine vape solution provides a high level of consistency in lever-pressing behavior for both males and females. Moreover, in male rats, we find that such e-cigarette nicotine vapor induces similar blood levels of nicotine's main metabolite, cotinine, as that found with intravenous nicotine self-administration. Therefore, the breathing pattern during vapor exposure in males leads to similar levels of titrated nicotine intake as with intravenous nicotine self-administration. Interestingly, a differential effect was found in the females, in which the same conditions of vapor exposure led to decreased cotinine levels with vapor compared to intravenous self-administration. Finally, differences in nicotine-mediated locomotion provide further support of the physiological effects of e-cigarette vapor inhalation. Taken together, our findings reveal important sex differences in nicotine intake based on the route of exposure, and we further establish a protocol for nicotine vapor self-administration in rats.


Subject(s)
E-Cigarette Vapor/pharmacology , Nicotine/pharmacology , Animals , Cotinine/blood , Drug-Seeking Behavior/drug effects , Electronic Nicotine Delivery Systems , Female , Locomotion/drug effects , Male , Rats , Rats, Wistar , Self Administration , Sex Factors
10.
Addict Biol ; 26(1): e12859, 2021 01.
Article in English | MEDLINE | ID: mdl-31782218

ABSTRACT

Nicotine use remains highly prevalent with tobacco and e-cigarette products consumed worldwide. However, increasing evidence of transgenerational epigenetic inheritance suggests that nicotine use may alter behavior and neurobiology in subsequent generations. We tested the effects of chronic paternal nicotine exposure in C57BL6/J mice on fear conditioning in F1 and F2 offspring, as well as conditioned fear extinction and spontaneous recovery, nicotine self-administration, hippocampal cholinergic functioning, RNA expression, and DNA methylation in F1 offspring. Paternal nicotine exposure was associated with enhanced contextual and cued fear conditioning and spontaneous recovery of extinguished fear memories. Further, nicotine reinforcement was reduced in nicotine-sired mice, as assessed in a self-administration paradigm. These behavioral phenotypes were coupled with altered response to nicotine, upregulated hippocampal nicotinic acetylcholine receptor binding, reduced evoked hippocampal cholinergic currents, and altered methylation and expression of hippocampal genes related to neural development and plasticity. Gene expression analysis suggests multigenerational effects on broader gene networks potentially involved in neuroplasticity and mental disorders. The changes in fear conditioning similarly suggest phenotypes analogous to anxiety disorders similar to post-traumatic stress.


Subject(s)
Fear/drug effects , Hippocampus/metabolism , Memory/drug effects , Nicotine/pharmacology , Paternal Exposure/adverse effects , Animals , Conditioning, Psychological/drug effects , Cues , Extinction, Psychological , Female , Male , Mice , Mice, Inbred C57BL , Up-Regulation/drug effects
11.
Nicotine Tob Res ; 22(8): 1364-1373, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32396625

ABSTRACT

INTRODUCTION: During adolescence, exposure to nicotine or cannabis independently induces effects on neuromaturation and later cognitive function. However, the potential effect of both drugs under co-use conditions has become of increasing concern given the prevalence of e-cigarettes, legalization of cannabis, and availability of synthetic "spice" cannabinoid agonists. AIMS AND METHODS: The current studies investigated the effects of exposure to a cannabinoid receptor agonist (WIN55,212-2) and/or nicotine over a discrete time period in mid-adolescence on later intravenous nicotine self-administration in adult male and female mice. We further examined whether cannabinoid agonist administration in adulthood would alter nicotine reinforcement, with either acute or chronic pairing across 7 days. RESULTS: We found that adult males exhibited increased nicotine self-administration at a lower, rewarding nicotine dose following adolescent cannabinoid exposure, either alone or with nicotine coadministration. In contrast, adult females demonstrated an opposing effect in which adolescent cannabinoid and nicotine coexposure resulted in decreased nicotine intake compared with the nicotine only and control groups. Furthermore, after maintaining nicotine self-administration across sessions, pretreatment with a low dose of the cannabinoid agonist decreased nicotine intake in both male and female control mice, and this lowering effect was evidenced after both acute and chronic treatment. However, the cannabinoid agonist was ineffective in altering nicotine intake in mice previously exposed to nicotine, cannabinoid agonist, or both during adolescence. CONCLUSIONS: These data provide evidence that adolescent drug exposure can alter later nicotine reinforcement in a sex-specific manner and can further modulate the effectiveness of interventions in reducing nicotine intake during adulthood. IMPLICATIONS: These studies demonstrate a significant impact of nicotine, cannabinoids, or coexposure on developmental processes during adolescence. Differential effects were observed within each sex, with opposing results found for cannabinoid exposure on nicotine intake in males and females. Intriguingly, we also evidenced resistance to the lowering effects of a cannabinoid agonist on nicotine intake in adulthood based on adolescent drug exposure. Thus, these findings have important implications for our understanding of the impact of nicotine and cannabinoids (eg, Δ9-tetrahydrocannabinol (THC) and synthetic "spice" cannabinoids) during development, with further implications for the effectiveness of therapeutic interventions based on prior drug exposure in youth.


Subject(s)
Cannabinoids/administration & dosage , Electronic Nicotine Delivery Systems/statistics & numerical data , Nicotine/administration & dosage , Reinforcement, Psychology , Reward , Self Administration/methods , Adolescent , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL
12.
Bio Protoc ; 10(4): e3532, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-33654756

ABSTRACT

The choroid plexus consists of a network of secretory epithelial cells localized throughout the lateral, third and fourth ventricles of the brain. Cerebrospinal fluid (CSF) is generated by the choroid plexus and released into the ventricular environment. This biofluid contains an enriched source of proteins, ions, and other signaling molecules for extracellular support of neurons and glial cells within the central nervous system. Given that other cells in the brain also release factors into the CSF, in vitro investigations of choroid plexus function are necessary to isolate processes selectively occurring within and released from this tissue. Here, we describe a protocol to isolate choroid plexus tissue from each of the ventricular locations, and the cell culture conditions required to support growth and maintenance of these epithelial cells. This technique allows for investigations of the functional significance of the choroid plexus, such as for the examination of stimuli promoting the release of growth factors and extracellular vesicles (e.g., exosomes and microvesicles) from ventricle-specific choroid plexus epithelial cells.

13.
eNeuro ; 6(2)2019.
Article in English | MEDLINE | ID: mdl-31119189

ABSTRACT

Neuronal cholinergic circuits have been implicated in cognitive function and neurological disease, but the role of cholinergic signaling in other cellular populations within the brain has not been as fully defined. Here, we show that cholinergic signaling mechanisms are involved in mediating the function of the choroid plexus, the brain structure responsible for generating CSF and releasing various factors into the brain. The choroid plexus was found to express markers of endogenous cholinergic signaling, including multiple nicotinic acetylcholine receptor (nAChR) subtypes in a region-specific manner, and application of nicotine was found to induce cellular activation, as evidenced by calcium influx in primary tissue. During intravenous nicotine self-administration in male rats, nicotine increased expression of transthyretin, a protein selectively produced and released by the choroid plexus, and microRNA-204 (mir-204), a transcript found in high levels in the choroid plexus and CSF. Finally, human choroid plexus tissue from both sexes was found to exhibit similar nAChR, transthyretin and mir-204 expression profiles, supporting the translational relevance of the findings. Together, these studies demonstrate functionally active cholinergic signaling mechanisms in the choroid plexus, the resulting effects on transthyretin and mir-204 expression, and reveal the direct mechanism by which nicotine modulates function of this tissue.


Subject(s)
Choroid Plexus , MicroRNAs , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Prealbumin , Receptors, Nicotinic , Signal Transduction/drug effects , Animals , Choroid Plexus/drug effects , Choroid Plexus/metabolism , Female , Humans , Male , MicroRNAs/drug effects , MicroRNAs/metabolism , Middle Aged , Prealbumin/drug effects , Prealbumin/metabolism , Rats , Rats, Wistar , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
14.
PLoS One ; 14(1): e0211346, 2019.
Article in English | MEDLINE | ID: mdl-30703155

ABSTRACT

Nicotine and cannabis use during adolescence has the potential to induce long lasting changes on affective and cognitive function. Here, we examined whether adolescent exposure to nicotine, the cannabinoid agonist WIN55-212,2 (WIN), or co-exposure to both would alter operant learning, locomotion, and anxiety- and reward-related behaviors in male and female mice during adulthood. Males exposed to a moderate dose of WIN (2 mg/kg) or co-exposed to nicotine and the moderate dose of WIN exhibited decreased anxiety-associated behaviors and increased cognitive flexibility, but did not differ in operant learning or generalized locomotion. In contrast, differences were not found among the females in these measures at the moderate WIN dose or in both sexes with exposure to a low WIN dose (0.2 mg/kg). Furthermore, a sex-dependent dissociative effect was found in natural reward consumption. Males exposed to the moderate dose of WIN or co-exposed to nicotine and the moderate dose of WIN demonstrated increased sucrose consumption. In contrast, females exposed to the moderate dose of WIN exhibited a decrease in sucrose consumption, which was ameliorated with co-administration of nicotine. Together, these novel findings demonstrate that adolescent exposure to cannabinoids in the presence or absence of nicotine results in altered affective and reward-related behaviors during adulthood.


Subject(s)
Anxiety/drug therapy , Benzoxazines/adverse effects , Morpholines/adverse effects , Naphthalenes/adverse effects , Nicotine/adverse effects , Animals , Conditioning, Operant/drug effects , Disease Models, Animal , Female , Humans , Locomotion/drug effects , Male , Mice , Reward , Sex Characteristics , Sucrose/metabolism
15.
J Neurosci ; 38(9): 2177-2188, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29371319

ABSTRACT

The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT(BAC)-Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT(IRES)-Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT(BAC)-Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT(BAC)-Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT(IRES)-Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT(IRES)-Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT(IRES)-Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT(IRES)-Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations.SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT(BAC)-Cre and ChAT(IRES)-Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors.


Subject(s)
Behavior, Animal/physiology , Choline O-Acetyltransferase , Genetic Techniques , Integrases , Models, Animal , Animals , Behavior, Animal/drug effects , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Chromosomes, Artificial, Bacterial , Female , Hippocampus/metabolism , Integrases/metabolism , Internal Ribosome Entry Sites , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Transgenic , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Vesicular Acetylcholine Transport Proteins/metabolism
17.
Psychopharmacology (Berl) ; 234(5): 749-760, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28013353

ABSTRACT

BACKGROUND: Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. OBJECTIVE: We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. METHODS: Female rats were treated with 10 µg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). RESULTS: Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. CONCLUSIONS: The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.


Subject(s)
Brain/drug effects , Corticosterone/metabolism , Dopamine/metabolism , Estradiol/analogs & derivatives , Estrogens/pharmacology , Pregnanolone/metabolism , Stress, Psychological/metabolism , Animals , Animals, Newborn , Brain/metabolism , Electric Stimulation , Estradiol/pharmacology , Female , Hypothalamo-Hypophyseal System , Hypothalamus/drug effects , Pituitary-Adrenal System , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Progesterone/pharmacology , Progestins/pharmacology , Rats , Receptors, Glucocorticoid/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/drug effects , Receptors, Mineralocorticoid/metabolism
18.
Front Cell Neurosci ; 10: 155, 2016.
Article in English | MEDLINE | ID: mdl-27378852

ABSTRACT

Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction.

19.
PLoS One ; 9(3): e92224, 2014.
Article in English | MEDLINE | ID: mdl-24632810

ABSTRACT

Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this brain region.


Subject(s)
Diet , Dopamine/metabolism , Prefrontal Cortex/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Anticipation, Psychological/drug effects , Exploratory Behavior/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Ligands , Male , Neurons/cytology , Neurons/drug effects , Nucleus Accumbens/cytology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Piperidines/pharmacology , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rimonabant , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...