Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 205(1): 71-81, 2012 May.
Article in English | MEDLINE | ID: mdl-22463611

ABSTRACT

AIM: The increase in skeletal muscle fatty acid metabolism during exercise has been associated with the release of calcium. We examined whether this increase in fatty acid oxidation was attributable to a calcium-induced translocation of the fatty acid transporter CD36 to the sarcolemma, thereby providing an enhanced influx of fatty acids to increase their oxidation. METHODS: Calcium release was triggered by caffeine (3 mm) to examine fatty acid oxidation in intact soleus muscles of WT and CD36-KO mice, while fatty acid transport and mitochondrial fatty acid oxidation were examined in giant vesicles and isolated mitochondria, respectively, from caffeine-perfused hindlimb muscles of WT and CD36-KO mice. Western blotting was used to examine calcium-induced signalling. RESULTS: In WT, caffeine stimulated muscle palmitate oxidation (+136%), but this was blunted in CD36-KO mice (-70%). Dantrolene inhibited (WT) or abolished (CD36-KO) caffeine-induced palmitate oxidation. In muscle, caffeine-stimulated palmitate oxidation was not attributable to altered mitochondrial palmitate oxidation. Instead, in WT, caffeine increased palmitate transport (+55%) and the translocation of fatty acid transporters CD36, FABPpm, FATP1 and FATP4 (26-70%) to the sarcolemma. In CD36-KO mice, caffeine-stimulated FABPpm, and FATP1 and 4 translocations were normal, but palmitate transport was blunted (-70%), comparable to the reductions in muscle palmitate oxidation. Caffeine did not alter the calcium-/calmodulin-dependent protein kinase II phosphorylation but did increase the phosphorylation of AMPK and acetyl-CoA carboxylase comparably in WT and CD36-KO. CONCLUSION: These studies indicate that sarcolemmal CD36-mediated fatty acid transport is a primary mediator of the calcium-induced increase in muscle fatty acid oxidation.


Subject(s)
CD36 Antigens/metabolism , Caffeine/pharmacology , Lipid Metabolism/drug effects , Muscle, Skeletal/drug effects , Palmitic Acid/metabolism , Animals , CD36 Antigens/genetics , Calcium/metabolism , Mice , Mice, Knockout , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction/drug effects
2.
Diabetologia ; 55(2): 479-88, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22101973

ABSTRACT

AIMS/HYPOTHESIS: Little is known about the subcellular distribution of lipids in insulin-resistant skeletal muscle. However, it has recently been suggested that lipid accumulation in the subsarcolemmal region directly contributes to insulin resistance. Therefore we hypothesised that regional differences in lipid distribution in insulin-resistant muscle may be mediated by: (1) a reduction in fatty acid trafficking into mitochondria; and/or (2) a regional increase in the enzymes regulating lipid synthesis. METHODS: Transmission electron microscopy was used to quantify lipid droplet and mitochondrial abundance in the subsarcolemmal and intermyofibrillar compartments in red and white muscles from lean and obese Zucker rats. To estimate rates of lipid trafficking into mitochondria, the metabolic fate of radiolabelled palmitate was determined. Key enzymes of triacylglycerol synthesis were also determined in each subcellular region. RESULTS: Subsarcolemmal-compartmentalised lipids represented a small absolute fraction of the overall lipid content in muscle, as regardless of fibre composition (red/white) or phenotype (lean/obese), lipid droplets were more prevalent in the intermyofibrillar region, whereas insulin-resistant white muscles were devoid of subsarcolemmal-compartmentalised lipid droplets. While, in obese animals, lipid droplets accumulated in both subcellular regions, in red muscle of these animals lipids only appeared to be trafficked away from intermyofibrillar mitochondria, a process that cannot be explained by regional differences in the abundance of triacylglycerol esterification enzymes. CONCLUSIONS/INTERPRETATION: Lipid accumulation in the subsarcolemmal region is not necessary for insulin resistance. In the intermyofibrillar compartment, the diversion of lipids away from mitochondria in insulin-resistant animals probably contributes to lipid accumulation in this subcellular area.


Subject(s)
Lipids/chemistry , Obesity/genetics , Subcellular Fractions/metabolism , Animals , DNA, Mitochondrial/metabolism , Disease Models, Animal , Fatty Acids/chemistry , Female , Glucose/metabolism , Insulin/metabolism , Microscopy, Electron, Transmission/methods , Mitochondria/metabolism , Obesity/metabolism , Oxygen/chemistry , Palmitic Acid/metabolism , Rats , Rats, Zucker , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL