Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Transl Anim Sci ; 8: txae001, 2024.
Article in English | MEDLINE | ID: mdl-38384374

ABSTRACT

Six existing equations (three for nonlactating and three for lactating; NRC, 1987, Predicting feed intake of food-producing animals. Washington, DC: The National Academies Press, National Academy of Science; doi: 10.17226/950; NRC, 1996, Nutrient requirements of beef cattle, 7th Revised Edition: Update 1996. Washington, DC: The National Academies Press; doi: 10.17226/9791; Hibberd and Thrift, 1992. Supplementation of forage-based diets. J. Anim. Sci. 70:181. [Abstr]) were evaluated for predicting feed intake in beef cows. Each of the previously published equations are sensitive to cow-shrunk BW and feed energy concentration. Adjustments in feed intake prediction are provided for level of milk yield in NRC (1987. Predicting feed intake of food-producing animals. Washington, DC: The National Academies Press, National Academy of Science; doi: 10.17226/950) and NRC (1996 Nutrient requirements of beef cattle, 7th Revised Edition: Update 1996. Washington, DC: The National Academies Press; doi: 10.17226/9791) equations. The equation published in 1996 used data generated between 1979 and 1993. Our objectives were to validate the accuracy of the published equations using more recent data and to propose alternative prediction models. Criteria for inclusion in the evaluation dataset included projects conducted or published since 2002, direct measurement of feed intake, adequate protein supply, and pen feeding (no metabolism crate data). After removing outliers, the dataset included 53 treatment means for nonlactating cows and 32 treatment means for lactating cows. Means for the nonlactating dataset were dry matter intake (DMI) = 13.2 ±â€…2.9 kg/d, shrunk body weight (SBW) = 578 ±â€…83.9 kg, body condition score = 5.7 ±â€…0.73, and Mcal net energy for maintenance (NEm)/kg of feed = 1.27 ±â€…0.15 Mcal/kg. Means for the lactating dataset were DMI = 14.6 ±â€…2.24 kg/d, SBW = 503 ±â€…73.4 kg, body condition score = 4.7 ±â€…0.58, and Mcal NEm/kg feed = 1.22 ±â€…0.16. Simple linear regression was used to determine slope, intercept, and bias when observed DMI (y) was regressed against predicted DMI (x). The NRC (1996. Nutrient requirements of beef cattle, 7th Revised Edition: Update 1996. Washington, DC: The National Academies Press; doi: 10.17226/9791) nonlactating equation underestimated feed intake in diets moderate to high in energy density with intercept differing from 0 and slope differing from one (P ≤ 0.01). Average deviation from observed values was 2.4 kg/d. Similarly, when the NRC (1996. Nutrient requirements of beef cattle, 7th Revised Edition: Update 1996. Washington, DC: The National Academies Press; doi: 10.17226/9791) equation was used to predict DMI in lactating cows, the slope differed from one (P < 0.01) with average deviation from observed values of 3.0 kg/d. New models were developed by pooling the two datasets and including a categorical variable for stage of production (0 = nonlactating and 1 = lactating). Continuous variables included study-average SBW0.75 and diet NEm, Mcal/kg. The best-fit empirical model accounted for 68% of the variation in daily feed intake with standard error of the estimate Sy root mean squared error = 1.31. The proposed equation needs to be validated with independent data.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37052683

ABSTRACT

The objective of this experiment was to determine if supplying additional propionate to the rumen alters dry matter intake (DMI), feeding behavior, glucose metabolism, and rumen fluid metabolites in steers fed a finishing diet. Ruminally cannulated steers (n = 6) were fed a finishing diet ad libitum. Steers were randomly assigned to one of three treatments in a 3 × 6 Latin rectangle design with three 15 d periods. Treatments of no Ca propionate (Control), 100 g/d (Low), or 300 g/d (High) were ruminally dosed twice daily. Individual intake was measured using an Insentec feeding system. Pre-feeding blood samples were collected on day 7 and rumen fluid samples were collected on day 13. An intravenous glucose tolerance test (IVGTT) was conducted on day 14 and liver biopsies were collected on day 15. Liver samples were analyzed for expression of genes involved in gluconeogenesis. Data were analyzed using a mixed model with period, treatment, day, and their interaction included, with day and minute within period as a repeated measure and steer as a random effect. Meal size (P = 0.049), meal frequency (P = 0.046), and DMI (P < 0.001) were decreased in High steers. Day 7 plasma glucose (P = 0.23) and lactate (P = 0.47) were not affected by treatment, but insulin was decreased (P = 0.008) and non-esterified fatty acids were increased (P = 0.044) in the High treatment compared with the Control. Rumen fluid lactate was decreased (P = 0.015) in the High treatment compared with the Low treatment. Total VFA concentrations did not differ (P = 0.88) between treatments. There was treatment × time interaction for proportions of acetate and propionate (P < 0.001) and the acetate:propionate ratio (P = 0.005). The effect on acetate was due to a decrease in the High treatment 2 h after dosing the treatment. Propionate proportions were greater in the High treatment than the Control at all time points and differed from the Low except at 0 h. Propionate treatments had no major effects on the glucose and insulin parameters observed in the IVGTT other than a tendency (P = 0.09) for an increased insulin time to peak. These data indicate that exogenous propionate decreases DMI but the decrease in propionate from fermentation due to reduced DMI might negate the supply of exogenous propionate in VFA supply to the animal. Mechanisms other than hepatic oxidation of propionate might be responsible for DMI regulation.


Propionate metabolism by the liver is thought to be a key regulator of appetite and feed intake of animals, including cattle. Previous research has shown that providing propionate to the rumen of cattle decreases feed intake. Propionate is also a major contributor to glucose for cattle to use as an energy source for growth and maintenance. In this experiment, it was hypothesized that increasing ruminal propionate would depress feed intake and decrease insulin sensitivity. Supplying 300 g of propionate a day to the rumen decreased feed intake and increased the proportion of propionate in the rumen fluid of steers. However, when propionate production was calculated based on feed intake, there was likely no difference in propionate supply to the animal. The lack of increase in propionate supply to the animal could explain the lack of effect on glucose metabolism, insulin sensitivity, and liver gene expression. The lack of an increase in propionate also indicates that the effect of propionate on feed intake could be due to alternative mechanisms than liver metabolism of propionate.


Subject(s)
Insulins , Propionates , Animals , Animal Feed/analysis , Diet/veterinary , Digestion , Fermentation , Glucose/metabolism , Lactates/metabolism , Lactates/pharmacology , Propionates/pharmacology , Propionates/metabolism , Rumen/metabolism
3.
Vet Sci ; 10(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36669038

ABSTRACT

In order to examine the effects of vaccine type and timing of crossbred beef calves (n = 151) were assigned to one of three BRD vaccination protocols stratified by breed of sire, sex, and date of birth, which included: (1) KM-a pentavalent killed viral (KV) vaccine at 2 to 3 months of age (D 0) and a pentavalent modified-live viral (MLV) vaccine at weaning (D 127); (2) MM-MLV on D 0 and revaccinated on D 127 or (3) WN-MLV at weaning and D 140. Vaccination treatment did not affect performance nor BRSV serum-neutralizing antibody titers. Serum-neutralizing antibody titers to BVDV-1 were greatest for the MM through D 154. However, following booster (KM) or initial vaccination (WN) at D 127, titers increased for the other treatment groups to higher values (KM) by the end of the study. Delay of initial vaccination until weaning may have delayed specific antibody response in the WN group and skewed the immune response towards a Th-1 or cell-mediated response. Overall, the inclusion of an MLV in the vaccine protocol resulted in a more robust antibody response, and the timing of vaccination may affect the onset of efficacious and robust vaccine responses.

4.
Transl Anim Sci ; 6(3): txac120, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36172462

ABSTRACT

The objectives of these experiments were to determine the relationship between maintenance requirements and energy partitioned to maternal tissue or milk production in limit-fed Angus cows and to determine the relationship between retained energy during the lactation period to dry-period voluntary forage intake (VDMI). Twenty-four mature fall-calving Angus cows were used in a 79-d study during late lactation to establish daily metabolizable energy required for maintenance (MEm). Cows were individually fed daily a mixed diet (2.62 Mcal MEl/kg, 18.2% crude protein) to meet energy and protein requirements of 505 kg beef cows producing 8.2 kg milk daily. If cow BW changed by ±9 kg from initial BW, daily feed intake was adjusted to slow BW loss or reduce BW gain. Milk yield and composition were determined on 3 occasions throughout the study. Maintenance was computed as metabolizable energy intake minus retained energy assigned to average daily maternal tissue energy change, average daily milk energy yield, and average daily energy required for pregnancy. After calves were weaned, cows were fed a low-quality grass hay diet (8.2% crude protein, 65% NDF) and VDMI was measured for 21 days. Lactation maintenance energy was 83% the default value recommended by NASEM (2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition.) for lactating Angus cows. Increasing lactation-period retained energy (decreasing BW loss and increasing milk energy yield) was associated with lower maintenance energy requirements (P < 0.01; R 2 = 0.92). Increased residual daily gain during lactation was associated with lower lactation maintenance energy requirements (P = 0.05; R 2 = 0.17). Post-weaning VDMI was not related to late-lactation milk energy production, although sensitive to lactation period BCS and BW loss. These results contradict previous reports, suggesting that maintenance requirements increase with increasing milk yield.

5.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35952719

ABSTRACT

The objective of this study was to examine the effects of diet energy density on ranking for dry matter intake (DMI), residual feed intake (RFI), and greenhouse gas emissions. Forty-two mature, gestating Angus cows (600 ± 69 kg body weight [BW]; body condition score [BCS] 5.3 ± 1.1) with a wide range in DMI expected progeny difference (-1.38 to 2.91) were randomly assigned to two diet sequences; forage then concentrate (FC) or concentrate then forage (CF). The forage diet consisted of long-stem native grass hay plus protein supplement (HAY; 1.96 Mcal ME/kg DM). The concentrate diet consisted of 35% chopped grass hay and 65% concentrate feeds on a dry matter basis (MIX; 2.5 Mcal ME/kg DM). The GreenFeed Emission Monitoring system was used to determine carbon dioxide (CO2), oxygen (O2), and methane (CH4) flux. Cow performance traits, ultrasound back fat and rump fat, feed DMI, and gas flux data were analyzed in a crossover design using a mixed model including diet, period, and sequence as fixed effects and pen and cow within sequence as random effects. For all measured traits excluding DMI, there was a diet × sequence interaction (P < 0.05). The correlation between MIX and HAY DMI was 0.41 (P = 0.067) and 0.47 (P = 0.03) for FC and CF sequences, respectively. There was no relationship (P > 0.66) between HAY and MIX average daily gain (ADG), regardless of sequence. Fifty-seven percent of the variation in DMI was explained by metabolic BW, ADG, and BCS for both diets during the first period. During the second period, the same three explanatory variables accounted for 38% and 37% of the variation in DMI for MIX and HAY diets, respectively. The negative relationship between BCS and DMI was more pronounced when cows consumed the MIX diet. There was no relationship between MIX and HAY RFI, regardless of sequence (P > 0.18). During the first period, correlations for CO2, CH4, and O2 with MIX DMI were 0.69, 0.81, and 0.56 (P ≤ 0.015), respectively, and 0.76, 0.74, and 0.64 (P < 0.01) with HAY DMI. During the second period, correlations for CO2, CH4, and O2 with MIX DMI were 0.62, 0.47, and 0.56 (P ≤ 0.11), respectively. However, HAY DMI during the second period was not related to gas flux (P > 0.47). Results from this experiment indicate that feed intake of two energy-diverse diets is moderately correlated while ADG while consuming the two diets is not related. Further experimentation is necessary to determine if gas flux data can be used to predict feed intake in beef cows.


The beef cow utilizes about 74% of total feed energy required to produce beef. Therefore, a more thorough understanding of feed intake, weight gain, and feed efficiency traits in the beef cow is fundamental to reducing cost and improving the environmental footprint of beef production. In this experiment, feed intake, weight gain, and greenhouse gas emissions were studied using a crossover design (two study periods) and two diets diverse in energy density and physical characteristics; hay or a hay/concentrate mixed diet. Feed intake of the hay diet was moderately, positively correlated to feed intake when cows consumed the mixed diet. However, there was no correlation in weight gain when cows consumed hay compared to weight gain when cows consumed the mixed diet. There was generally a strong correlation between feed intake and greenhouse gas emissions during the first feeding period. However, there was no correlation between greenhouse gas fluxes and feed intake when cows consumed hay after they had first received the mixed diet. Further research is necessary to determine if greenhouse gas flux data can be used as a reliable proxy for feed intake in beef cows.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Eating , Female , Methane/metabolism , Oxygen
6.
Transl Anim Sci ; 6(3): txac086, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35854969

ABSTRACT

Although performance benefits of monensin have been extensively studied in finishing cattle, growing cattle, and dairy cows, considerably less published work is available evaluating response to monensin supplementation in cow-calf production systems. This meta-analysis investigated the impacts of monensin on performance of beef cows and developing replacement heifers. The replacement heifer analysis was conducted using data from 18 different peer-reviewed publications and experiment station reports. The mature cow analysis included 21 different publications and experiment station reports. The metaphor package (version 2.4-0; Viechtbauer, 2010) for R (version 4.0.3; www.r-project.org) was used to determine the overall effect size of monensin compared to a negative control. Each study's n, means, and SEM or P value was used to calculate the mean difference and estimate of within study variance for responses of interest. In replacement heifers, monensin treatment increased (P < 0.01); average daily gain (+0.03 ± 0.008 kg/d), feed efficiency (+0.013 ± 0.008 gain:feed), and percentage cycling before the breeding season (+15.9 ± 5.13%); while decreasing (P < 0.01): dry matter intake (0.293 ± 0.081 kg), and age at puberty (-8.9 ± 1.48 d). Six studies reporting ad libitum forage intake for mature cows showed decreased (P = 0.008) DMI by 0.85 ± 0.32 kg/d. Six studies reported milk yield and revealed an increase (P = 0.01) of 0.39 ± 0.15 kg/d when cows were supplemented with monensin. Monensin supplementation resulted in a reduction (P = 0.02) in days to first estrus by 18 ± 8.2 d and percentage of cows exhibiting estrus prior to the breeding season was increased by 19 ± 8% (P = 0.03). There were no differences in artificial insemination pregnancy nor total pregnancy for either the heifer or mature cow data sets. This analysis indicates potential for use of monensin in heifer development and beef cow production systems. Further research is needed to elucidate the effects on reproductive efficiency, DMI, milk production, weight, and body composition change.

7.
Transl Anim Sci ; 6(2): txac031, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35475114

ABSTRACT

Monensin has been part of the beef production landscape for over 45 years. Although first approved for use in finishing cattle, it has since been approved for cattle in extensive production systems and has been an economical way to increase performance of forage-fed animals. This meta-analysis investigated the impacts of monensin on performance of stocker cattle on high-forage diets. The stocker performance analysis resulted from 38 experiments with 73 mean comparisons; bloat analysis was conducted with 12 experiments with 23 mean comparisons. The metaphor package (version 2.4-0) for R (version 4.0.3; www.r-project.org) was used to determine the overall effect size of monensin compared to a negative control. Each study's n, means, and SEM or P-value was used to calculate the mean difference and estimate of within-study variance for responses of interest. Moderators of monensin response considered in the analysis were delivery method, dose, study duration, initial calf BW, diet ME and CP, and forage category. Initial BW and basal ADG averaged 236 ± 45.9 kg and 0.72 ± 0.28 kg, respectively. In the ADG analysis, the only significant moderator of those considered was length of the study (P < 0.01); as duration of the study increased, the ADG response to monensin decreased by 0.0007 kg/day. For the average 112-day length of study, the average monensin response was estimated to be 0.0784 kg/day increase in ADG, approximately 10% above controls. Sufficient information was presented in 18 citations representing 40 mean comparisons for determining the effect of monensin on BW at the end of the experiment. The response model (P < 0.01) for ending BW, kg = 22.3-0.05 (initial calf BW, kg). Thus, for the average initial BW of 235 kg the average monensin response was estimated to be 10.6 kg increase in average ending BW. The incidence (-20%) and severity (-0.7 bloat score) of bloat was found to be reduced in bloat-prone pastures. There is ample evidence that monensin increases performance of growing calves on high forage diets along with reducing the incidence and severity of bloat.

8.
J Anim Sci ; 100(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35325181

ABSTRACT

Our objectives were to 1) investigate the difference in chemical composition and disappearance kinetics between loose dried distillers' grains (DDG) and extruded DDG cubes and 2) evaluate the effects of supplementation rate of extruded DDG cubes on voluntary dry matter intake (DMI), rate and extent of digestibility, and blood parameters of growing beef heifers offered ad libitum bermudagrass (Cynodon dactylon) hay. To characterize the changes in chemical composition during the extrusion process, loose and extruded DDG were evaluated via near-infrared reflectance spectroscopy, and dry matter (DM) disappearance kinetics were evaluated via time point in situ incubations. Extruded DDG cubes had greater (P ≤ 0.01) contents of fat, neutral detergent insoluble crude protein, and total digestible nutrients, but lower (P ≤ 0.01) neutral and acid detergent fiber than loose DDG. Additionally, the DM of extruded DDG cubes was more immediately soluble (P < 0.01), had greater (P < 0.01) effective degradability and lag time, and tended (P = 0.07) to have a greater disappearance rate than loose DDG. In the 29-d supplementation rate study, 23 Charolais-cross heifers were randomly assigned to one of four supplemental treatments: 1) control, no supplement; 2) low, 0.90 kg DDG cubes per d; 3) intermediate, 1.81 kg DDG cubes per d; or 4) high, 3.62 kg DDG cubes per d. Titanium dioxide was used as an external marker to estimate fecal output and particulate passage rate (Kp). Blood was collected from each animal to determine supplementation effects on blood metabolites. Indigestible neutral detergent fiber was used as an internal marker to assess the rate and extent of hay and diet DM digestibility (DMD). Increasing supplementation rate increased Kp and total diet DMI linearly (P < 0.01), yet linearly decreased (P < 0.01) hay DMI. Hay DMD decreased quadratically (P < 0.01), while total diet DMD increased linearly (P < 0.01) with increased DDG cube inclusion. Supplemented heifers had greater (P = 0.07) blood urea nitrogen concentrations than control animals 4 h post-supplementation. Intermediate and high rates of supplementation resulted in lower (P < 0.01) serum nonesterified fatty acid concentrations post-supplementation than control heifers. Concentrations of serum glucose and lactate were greatest (P ≤ 0.06) 8 h post-supplementation. Our results suggest that extruded DDG cubes may be an adequate supplement for cattle consuming moderate-quality forage, and further research is warranted.


Growing cattle are oftentimes provided supplemental concentrate as a source of protein and energy in order to meet performance goals when consuming low-quality forages. The effects of supplemental concentrate on forage intake vary, which may be related to the quality of forage and the characteristics of the supplement being evaluated. Dried distillers' grains (DDG) are a by-product of ethanol production and have become a common supplement for growing cattle due to the increased energy and rumen undegradable protein content. A stable DDG cube made via a novel extrusion process may be advantageous for pasture supplementation due to the reduced risk of loss of product from wind and soil mixing that is common with loose DDG. The effects of supplementation rate of traditional concentrate sources on forage intake are abundant, but research regarding extruded DDG cubes is almost nonexistent. Thus, our objective was to evaluate extruded DDG cube supplementation rate (0, 0.90, 1.81, or 3.62 kg DDG cubes per d) for growing cattle on voluntary intake and digestibility of moderate-quality forage. Although increasing supplementation rate reduced forage intake and digestibility, total diet intake and digestibility were increased. Our results suggested that extruded DDG cubes have potential as a supplement for cattle consuming moderate-quality forage.


Subject(s)
Cynodon , Rumen , Animal Feed/analysis , Animals , Cattle , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Dietary Supplements , Digestion , Female , Fermentation , Rumen/metabolism
9.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34618893

ABSTRACT

The objective of this study was to investigate the effects of water quality on water intake (WI), forage intake, diet digestibility, and blood constituents in beef cows and growing beef heifers. This was a replicated 5 × 5 Latin square with five drinking water treatments within each square: 1) fresh water (Control); 2) brackish water (100 BRW treatment) with approximately 6,000 mg/kg total dissolved solids (TDS); 3) same TDS level as 100 BRW achieved by addition of NaCl to fresh water (100 SLW); 4) 50% brackish water and 50% fresh water to achieve approximately 3,000 mg/kg TDS (50 BRW); and 5) same TDS level as 50 BRW achieved by addition of NaCl to fresh water (50 SLW). Each of the five 21-d periods consisted of 14 d of adaptation and 5 d of data collection. Animals were housed individually and fed mixed alfalfa (Medicago sativa) grass hay cubes. Feed and WI were recorded daily. Data were analyzed with animal as the experimental unit. Age, treatment, and age × treatment were fixed effects, and animal ID within age was the random variable for intake, digestibility, and blood parameter data. Water and feed intake were greater than expected, regardless of age or water treatment. No treatment × age interactions were identified for WI (P = 0.71), WI expressed as g/kg body weight (BW; P = 0.70), or dry matter intake (DMI; P = 0.21). However, there was an age × treatment tendency for DMI when scaled to BW (P = 0.09) in cows consuming 100 BRW compared with fresh water. No differences were found for the other three treatments. Heifers provided 50 SLW water consumed less (P < 0.05) feed (g/kg BW) compared with heifers provided fresh water and 100 BRW. No differences (P > 0.05) in water, DMI, feed intake, or diet digestibility were found due to water quality treatment. In conclusion, under these conditions, neither absolute WI, absolute DMI, nor diet digestibility was influenced by the natural brackish or saline water used in this experiment. These results suggest that further research is necessary to determine thresholds for TDS or salinity concentration resulting in reduced water and/or feed intake and diet digestibility.


Subject(s)
Animal Feed , Salts , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Eating , Medicago sativa , Rumen
10.
J Anim Sci ; 99(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34718608

ABSTRACT

The objective of this study was to determine whether increasing propionate alters dry matter intake (DMI), glucose clearance rate, blood metabolites, insulin concentrations, and hepatic gene expression in steers fed a finishing diet. Holstein steers (n = 15; BW = 243 ± 3.6 kg) were individually fed a finishing diet ad libitum. Steers were allocated by body weight (BW) to receive: no Ca propionate (Control), 100 g/d Ca propionate (Low), or 300 g/d Ca propionate (High) in the diet. Orts were collected and weighed daily to determine DMI. Blood samples were collected on days 0, 7, and 21, and BW recorded on days 0, 14, and 28. An intravenous glucose tolerance test (IVGTT) was conducted on days 14 and 28 of the trial. Liver biopsies were collected on day 33 for gene expression analysis. Blood samples were analyzed for whole blood glucose and lactate, plasma non-esterified fatty acids (NEFAs), and insulin concentrations. Data were analyzed using a mixed model with treatment, day and their interaction included, with day and minute as a repeated measure. The control treatment had greater (P < 0.01) DMI than low and high steers. Body weight was increased in control steers on days 14 and 28 compared with the steers receiving the High treatment (P = 0.03 for the interaction). Blood glucose concentrations tended (P = 0.09) to be higher on day 21 than days 0 and 7 but was not affected by treatment (P = 0.58). Plasma NEFA concentrations were lower (P = 0.05) for control steers than other treatments, and greater (P = 0.002) on day 0 than days 7 and 21. Blood lactate concentrations were greater (P = 0.05) on day 7, than days 0 and 21, but not affected by treatment (P = 0.13). High steers had greater plasma insulin concentrations in response to the IVGTT than steers on the other treatments (P = 0.001). There was no treatment (P ≥ 0.16) or day effect (P ≥ 0.36) on glucose peak, plateau, or clearance rate. High steers had greater expression of solute carrier family 16 member 1 (SLC16A1; P = 0.05) and tended to have greater hepatic expression of solute carrier family 2 member 2 (SLC2A2; P = 0.07). These data indicate that increased propionate may decrease DMI and insulin sensitivity.


Subject(s)
Animal Feed , Propionates , Animal Feed/analysis , Animals , Blood Glucose , Diet/veterinary
11.
Transl Anim Sci ; 5(3): txab104, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278238

ABSTRACT

Two experiments were conducted to determine the effects of feeder design on hay intake, apparent diet digestibility, and hay waste in gestating beef cows. Native tallgrass prairie hay and a protein supplement was fed throughout both experiments. In Exp. 1, 56 crossbred cows were used in a Latin square arrangement. Feeder design treatments included a conventional open bottom steel ring (OBSR), an open bottom polyethylene pipe ring (POLY); a sheeted bottom steel ring (RING), and a sheeted bottom steel ring with a basket (BASK). Cows were weighed and allotted based on BW to one of four previously grazed 2.0 ha paddocks equipped with a concrete feeding pad. Fourteen cows were assigned to each paddock and three round bales were fed consecutively within each treatment period. The cows acclimated to the feeders while the first bale was being consumed. Subsequently, hay waste data were collected while the second and third bale within each period were being consumed. Waste was measured for each bale at 24, 48, 72, and 96 h after each bale was introduced into the pen. Hay waste was significantly affected by hay feeder design with 19.7, 21.1, 12.4, and 5.5% of original bale weight wasted for OBSR, POLY, RING, and BASK, respectively (P < 0.01). There was a feeder design × day interaction (P < 0.01) with greater waste when the bale was first introduced into the pen in OBSR, POLY, and RING feeders and gradually declining thereafter, while waste from the BASK feeder was consistently low. There was a tendency (P = 0.06) for cows eating from OBSR feeders to consume less hay than cows eating from RING feeders. Feeder design did not influence apparent diet digestibility (P = 0.46). In Exp. 2, 64 crossbred cows (body weight = 590 ± 59 kg) were used to determine waste, forage intake, and apparent diet digestibility when hay was fed from a sheeted bottom steel ring (RING) or a RING feeder with a cone insert (CONE). More hay was wasted when cows were fed from RING feeders compared to CONE feeders (11.9% vs. 4.8%, P < 0.01). Feeder design had no effect on DMI or apparent digestibility (P > 0.45). Hay savings from adopting a more conservative feeder design can have a dramatic influence on hay utilization by beef cows and thus on cost of production.

12.
Transl Anim Sci ; 4(2): txaa008, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32705009

ABSTRACT

The objective of this study was to investigate the impacts of cow breed type and age on maintenance requirements, feed energy utilization, and voluntary forage intake. The main effect of breed type included Angus (ANG; n = 32) and Hereford × Angus (HA; n = 27) lactating cows. The main effect of age included 2- and 3-yr-old (YOUNG; n = 29) and 4- to 8-yr-old (MATURE; n = 30) cows. Within breed type and age class, cows were randomly assigned to 1 of 2 pens for a total of 8 pens, each housing 7 to 9 cow/calf pairs. To determine maintenance energy requirements, cows and calves were limit-fed for 105 d to body weight (BW) and body condition score (BCS) stasis. There were no differences between breeds in cow hip height, BW, average milk yield (P > 0.31), diet digestibility, or cow maintenance energy requirement (P = 0.54). Crossbred cows had greater BCS (P < 0.05) throughout the experiment. Efficiency of calf growth was not different between breeds when expressed as feed intake of the cow/calf pair nor as energy intake of the pair per unit of calf BW gain (P ≥ 0.31). Young cows produced less milk per day and per unit of BW0.75 (P < 0.01); however, there was no effect of cow age on maintenance energy requirement, diet digestibility, or efficiency of calf growth (P > 0.10). Subsequently, a 45-d experiment was conducted to determine voluntary low-quality forage intake. Cows were housed in dry-lot pens equipped with shade, windbreaks, and feed bunks with free-choice access to clean water and a chopped hay ration was provided ad libitum to determine forage intake. Daily forage intake was lower (P = 0.05) for HA compared with ANG (123 vs. 132 g/kg BW0.75, respectively) although there was no difference in BW. However, HA cows sustained greater BCS (P < 0.01). There was no difference (P = 0.60) in forage intake per unit of BW0.75 due to cow age. Results indicate similar calf growth efficiency among breed types although crossbred cows maintained greater body energy stores and consumed less low-quality forage during the voluntary intake experiment. These differences could not be attributed to lower maintenance energy requirements. Neither maintenance energy requirement nor calf growth efficiency was different between young and mature cows.

13.
J Anim Sci ; 97(3): 1198-1211, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30668783

ABSTRACT

Early weaning is used to minimize cow nutrient requirements in situations where feed inputs are scarce or expensive. For many years, maintenance energy requirements have been assumed to be 20% greater in lactating compared with non-lactating beef cows. While not well established, maintenance energy requirements are thought to be greatest in primiparous cows and to decline with age. Consequently, early weaning primiparous cow-calf pairs should improve overall efficiency, particularly in situations where mid-to-late lactation forage or feed nutritive value is low. The objective of this study was to determine the biological efficiency of early weaning and maintenance energy requirements of lactating versus non-lactating primiparous cows. Experiments were conducted in two consecutive years using 90 primiparous cows and their calves (48 in yr 1, 42 in yr 2). Pairs were randomly assigned to one of the six pens (8 pairs/pen yr 1, 7 pairs/pen yr 2) and pens were randomly assigned to 1 of 2 treatments; (1) early weaning (130 d ± 15.4; EW, n = 6) and (2) traditional weaning (226 d ± 13.1; TW, n = 6). Late lactation cow and calf performance and feed consumption were measured for 92 d (yr 1) and 100 d (yr 2). Cows were limit-fed to meet maintenance requirements, while calves were offered ad libitum access to the same diet in a creep-feeding area. Calves were not allowed access to the cows' feed. Cow feed intake, body condition score, body weight (BW), milk yield and composition, and calf body weight gain and creep feed intake were recorded. After accounting for lactation and retained energy, there was a trend for greater maintenance energy requirements of lactating primiparous cows (P = 0.07). From the early weaning date to traditional weaning date, calf average daily gain (ADG) was greater (P < 0.01) for TW calves. Feed and energy efficiency of the pair was improved for the TW system (P < 0.01). Greater ADG were reported for EW calves during the stocker period (P = 0.03), but there were no differences during the finishing period (P > 0.40). At harvest, BW was greater (P = 0.02) and gain to feed ratio tended (P = 0.06) to be improved for TW calves. The increased TW calf performance offset the additional maintenance costs of their lactating dams, resulting in the TW system converting total feed energy to kilograms of calf BW gain more efficiently.


Subject(s)
Cattle/physiology , Eating , Energy Metabolism , Milk/metabolism , Nutritional Requirements , Animal Feed , Animals , Body Weight , Cattle/growth & development , Diet/veterinary , Female , Lactation , Parity , Pregnancy , Random Allocation , Time Factors , Weaning , Weight Gain
14.
Transl Anim Sci ; 3(3): 962-968, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32704860

ABSTRACT

The California Net Energy System (CNES) has been successfully used for many years to generate estimates of grazing animal energy requirements, supplemental needs, and energy value of grazed forage diets. Compared to pen feeding situations, validation of feed nutritive value estimates or animal performance projections are extremely difficult in grazing animals because many of the system inputs are constantly changing. A major difficulty in applying this or any energy accounting system in the field is acquiring accurate estimates of forage intake. We discuss the various equations available to estimate forage intake for grazing animals with emphasis on beef cows. Progress has been made in recent years although there remains substantial discrepancy among various equations, particularly in the upper range of forage digestibility. Validation work and further development is needed in this area. For lactating cows, our conclusion is that the adjustment of intake for milk production (0.2 kg increase in forage intake per kg of milk produced) needs to be increased to a minimum of 0.35. A particular challenge with the CNES for grazing beef cows is the dramatic interaction that can occur between genetic potential for production traits and nutrient availability. Examples from literature are provided and a case study is presented demonstrating that energy requirements are dynamic and depend on nutrients available in grazing systems. The CNES is a useful tool in grazing beef cattle management although there remains substantial opportunity and need to improve inputs and validate the system in grazing situations.

15.
Vet Hum Toxicol ; 44(2): 70-2, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11931505

ABSTRACT

Fourteen heifer calves weighing 174.5+/-17.7 kg were used to evaluate the effects of 3 levels of dietary sulfur. Sodium sulfate added to basal diet made treatments designated moderate (3860 ppm sulfur), moderatey high (5540 ppm sulfur) and high (7010 ppm sulfur). Clinical polioencephalomalacia occurred in all calves assigned to the moderately high and high treatments. The calves did not acclimate to the dietary sulfur as polioencephalomalacia occurred in 4 animals on d 35 and in 1 calf on d 37. Microscopic lesions confirmed polioencephalomalacia in the calves on moderately high and high diets. Microscopic lesions also were present in 4 moderate diet calves although clinical signs were not seen. High dietary sulfur did not limit feed intake. Diets containing sulfur levels >4000 ppm sulfur produced polioencephalomalacia in 10 calves and sub-clinical brain lesions occurred in 4 calves consuming <4000 ppm sulfur.


Subject(s)
Cattle Diseases/chemically induced , Encephalomalacia/chemically induced , Sulfur/adverse effects , Animals , Cattle , Encephalomalacia/epidemiology , Encephalomalacia/veterinary , Female , Incidence , Sulfur/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...