Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 578: 112050, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37683909

ABSTRACT

Vitamin D, and its receptor (VDR), play roles in muscle development/function, however, VDR detection in muscle has been controversial. Using different sample preparation methods and antibodies, we examined differences in muscle VDR protein abundance between two mouse strains and between mice and humans. The mouse D-6 VDR antibody was not reliable for detecting VDR in mouse muscle, but was suitable for human muscle, while the rabbit D2K6W antibody was valid for mouse and human muscle. VDR protein was generally lower in muscles from C57 B l/6 than FVB/N mice and was higher in human than mouse muscle. Two putative VDR bands were detected in human muscle, possibly representing VDR isoforms/splice variants, with marked inter-individual differences. This study provides new information on detecting VDR in muscle and on inter-mouse strain and inter-human individual differences in VDR expression. These findings may have implications for future pre-clinical and clinical studies and prompt further investigation to confirm possible VDR isoforms in human muscle.

2.
J Bone Miner Res ; 35(6): 1092-1106, 2020 06.
Article in English | MEDLINE | ID: mdl-32078180

ABSTRACT

Vitamin D is commonly prescribed to normalize deficiencies and to treat osteoporosis. However, the effect vitamin D supplements have on skeletal muscle health is equivocal. Although vitamin D is known to play a role in the various processes that maintain muscle integrity and function, recent studies utilizing high bolus dose vitamin D supplementation has demonstrated an increased risk of falls. Thus, the aim of this study was to investigate the effects of high vitamin D supplementation on skeletal muscle function with and without exercise enrichment. Four-week old C57BL/10 mice (n = 48) were separated into either normal vitamin D (1500 IU/kg diet; unsupplemented) or high vitamin D (20,000 IU/kg diet; supplemented) treatment groups. Each dietary group was further separated into interventional subgroups where mice either remained sedentary or received exercise-enrichment for 8 weeks in the form of voluntary running. Following the intervention period, whole body in vivo and ex vivo contractile analysis were performed. High vitamin D supplementation decreased force production in the slow-twitch soleus muscles of sedentary mice (p < .01); however, exercise normalized this effect. Eight weeks of exercise did not improve fatigue resistance of the extensor digitorum longus (EDL) or soleus muscles in unsupplemented mice, likely due to low levels of activation in these muscles. In contrast, fatigability was improved in the EDL (p < .01) and even more so in the soleus (p < .001) in the supplemented exercise-enriched group. Our data highlights that increasing vitamin D levels above normal reduces postural muscle force as seen in the soleus. Thus, unnecessary vitamin D supplementation may contribute to the increased risk of falls observed in some studies. Interestingly, when vitamin D supplementation was combined with exercise, force production was effectively restored, and fatigue resistance improved, even in muscles lowly activated. Regular exercise may modulate the effects of vitamin D on skeletal muscle, and be recommended for individuals receiving vitamin D supplements. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Subject(s)
Running , Vitamin D , Animals , Dietary Supplements , Mice , Mice, Inbred C57BL , Muscle Contraction , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...