Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Alzheimers Dement ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764252

ABSTRACT

INTRODUCTION: Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS: We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS: AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION: Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS: Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.

2.
Cell Rep ; 43(5): 114145, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38669141

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis (5-year survival rate of 30.5% in the United States). Designing cell therapies to target AML is challenging because no single tumor-associated antigen (TAA) is highly expressed on all cancer subpopulations. Furthermore, TAAs are also expressed on healthy cells, leading to toxicity risk. To address these targeting challenges, we engineer natural killer (NK) cells with a multi-input gene circuit consisting of chimeric antigen receptors (CARs) controlled by OR and NOT logic gates. The OR gate kills a range of AML cells from leukemic stem cells to blasts using a bivalent CAR targeting FLT3 and/or CD33. The NOT gate protects healthy hematopoietic stem cells (HSCs) using an inhibitory CAR targeting endomucin, a protective antigen unique to healthy HSCs. NK cells with the combined OR-NOT gene circuit kill multiple AML subtypes and protect primary HSCs, and the circuit also works in vivo.


Subject(s)
Killer Cells, Natural , Leukemia, Myeloid, Acute , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Animals , Mice , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Gene Regulatory Networks , Hematopoietic Stem Cells/metabolism , Cell Line, Tumor , Precision Medicine/methods , Cell- and Tissue-Based Therapy/methods
3.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38014042

ABSTRACT

Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, little is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane towards the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion and cortical contractility. Overall, our work reveals cell intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.

5.
Brain Commun ; 5(6): fcad302, 2023.
Article in English | MEDLINE | ID: mdl-37965047

ABSTRACT

Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.

6.
Neurology ; 101(23): e2376-e2387, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37848332

ABSTRACT

BACKGROUND AND OBJECTIVES: To investigate the spatiotemporal characteristics of sleep waveforms in temporal lobe epilepsy (TLE) and examine their association with cognition. METHODS: In this retrospective, cross-sectional study, we examined overnight EEG data from adult patients with TLE and nonepilepsy comparisons (NECs) admitted to the epilepsy monitoring unit at Mass General Brigham hospitals. Automated algorithms were used to characterize sleep macroarchitecture (sleep stages) and microarchitecture (spindles, slow oscillations [SOs]) on scalp EEG and to detect hippocampal interictal epileptiform discharges (hIEDs) from foramen ovale electrodes simultaneously recorded in a subset of patients with TLE. We examined the association of sleep features and hIEDs with memory and executive function from clinical neuropsychological evaluations. RESULTS: A total of 81 adult patients with TLE and 28 NEC adult patients were included with similar mean ages. There were no significant differences in sleep macroarchitecture between groups, including relative time spent in each sleep stage, sleep efficiency, and sleep fragmentation. By contrast, the spatiotemporal characteristics of sleep microarchitecture were altered in TLE compared with NEC and were associated with cognitive impairments. Specifically, we observed a ∼30% reduction in spindle density in patients with TLE compared with NEC, which was significantly associated with worse memory performance. Spindle-SO coupling strength was also reduced in TLE and, in contrast to spindles, was associated with diminished executive function. We found no significant association between sleep macroarchitectural and microarchitectural parameters and hIEDs. DISCUSSION: There is a fundamental alteration of sleep microarchitecture in TLE, characterized by a reduction in spindle density and spindle-SO coupling, and these changes may contribute to neurocognitive comorbidity in this disorder.


Subject(s)
Cognitive Dysfunction , Epilepsy, Temporal Lobe , Adult , Humans , Retrospective Studies , Cross-Sectional Studies , Sleep , Electroencephalography , Cognitive Dysfunction/etiology
7.
Clin Neurophysiol Pract ; 8: 177-186, 2023.
Article in English | MEDLINE | ID: mdl-37681118

ABSTRACT

Objective: Misinterpretation of EEGs harms patients, yet few resources exist to help trainees practice interpreting EEGs. We therefore sought to evaluate a novel educational tool to teach trainees how to identify interictal epileptiform discharges (IEDs) on EEG. Methods: We created a public EEG test within the iOS app DiagnosUs using a pool of 13,262 candidate IEDs. Users were shown a candidate IED on EEG and asked to rate it as epileptiform (IED) or not (non-IED). They were given immediate feedback based on a gold standard. Learning was analyzed using a parametric model. We additionally analyzed IED features that best correlated with expert ratings. Results: Our analysis included 901 participants. Users achieved a mean improvement of 13% over 1,000 questions and an ending accuracy of 81%. Users and experts appeared to rely on a similar set of IED morphologic features when analyzing candidate IEDs. We additionally identified particular types of candidate EEGs that remained challenging for most users even after substantial practice. Conclusions: Users improved in their ability to properly classify candidate IEDs through repeated exposure and immediate feedback. Significance: This app-based learning activity has great potential to be an effective supplemental tool to teach neurology trainees how to accurately identify IEDs on EEG.

9.
Sci Rep ; 13(1): 11448, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454163

ABSTRACT

Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously proposed brain age biomarker, the "brain age index" (BAI), with cognitive test scores and use machine learning to develop and validate a series of new sleep EEG-based indices, termed "sleep cognitive indices" (SCIs), that are directly optimized to correlate with specific cognitive scores. Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes involved in reasoning-based problem solving and susceptible to aging and neuropathology), and crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge toward problem-solving). We show that SCI decoded information about total cognition (Pearson's r = 0.37) and fluid cognition (Pearson's r = 0.56), while BAI correlated only with crystallized cognition (Pearson's r = - 0.25). Overall, these sleep EEG-derived biomarkers may provide accessible and clinically meaningful indicators of neurocognitive health.


Subject(s)
Brain Waves , Sleep , Humans , Cognition , Problem Solving , Brain , Electroencephalography , Biomarkers
10.
Epilepsia ; 64(10): 2771-2780, 2023 10.
Article in English | MEDLINE | ID: mdl-37392445

ABSTRACT

OBJECTIVE: Individuals with epilepsy often have memory difficulties, and older adults with epilepsy are especially vulnerable, due to the additive effect of aging. The goal of this study was to assess factors that are associated with 24-h memory retention in older adults with epilepsy. METHODS: Fifty-five adults with epilepsy, all aged >50 years, performed a declarative memory task involving the recall of the positions of 15 card pairs on a computer screen prior to a 24-h ambulatory electroencephalogram (EEG). We assessed the percentage of encoded card pairs that were correctly recalled after 24 h (24-h retention rate). EEGs were evaluated for the presence and frequency of scalp interictal epileptiform activity (IEA) and scored for total sleep. Global slow wave activity (SWA) power during non-rapid eye movement sleep was also calculated. RESULTS: Forty-four participants successfully completed the memory task. Two were subsequently excluded due to seizures on EEG. The final cohort (n = 42) had a mean age of 64.3 ± 7.5 years, was 52% female, and had an average 24-h retention rate of 70.9% ± 30.2%. Predictors of 24-h retention based on multivariate regression analysis when controlling for age, sex, and education included number of antiseizure medications (ß = -.20, p = .013), IEA frequency (ß = -.08, p = .0094), and SWA power (ß = +.002, p = .02). SIGNIFICANCE: In older adults with epilepsy, greater frequency of IEA, reduced SWA power, and higher burden of antiseizure medications correlated with worse 24-h memory retention. These factors represent potential treatment targets to improve memory in older adults with epilepsy.


Subject(s)
Epilepsy , Sleep , Humans , Female , Aged , Middle Aged , Male , Memory , Epilepsy/complications , Seizures , Mental Recall , Electroencephalography
11.
Am J Alzheimers Dis Other Demen ; 38: 15333175231160005, 2023.
Article in English | MEDLINE | ID: mdl-36892007

ABSTRACT

In older adults with cognitive decline and epilepsy, diagnosing the etiology of cognitive decline is challenging. We identified 6 subjects enrolled in the Imaging Dementia-Evidence of Amyloid Imaging Scanning (IDEAS) study and nonlesional epilepsy. Three cognitive neurologists reviewed each case to determine the likelihood of underlying Alzheimer's disease (AD) pathology. Their impressions were compared to amyloid PET findings. In 3 cases the impression was concordant with PET findings. In 2 cases "possibly suggestive," the PET reduced diagnostic uncertainty, with 1 having a PET without elevated amyloid and the other PET with intermediate amyloid. In the remaining case with lack of reviewer concordance, the significance of PET with elevated amyloid remains uncertain. This case series highlights that in individuals with a history of epilepsy and cognitive decline, amyloid PET can be a useful tool in evaluating the etiology of cognitive decline when used in an appropriate context.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Epilepsy , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Positron-Emission Tomography/methods , Amyloid , Epilepsy/diagnostic imaging , Amyloid beta-Peptides
12.
J Alzheimers Dis ; 91(4): 1557-1572, 2023.
Article in English | MEDLINE | ID: mdl-36641682

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is associated with EEG changes across the sleep-wake cycle. As the brain is a non-linear system, non-linear EEG features across behavioral states may provide an informative physiologic biomarker of AD. Multiscale fluctuation dispersion entropy (MFDE) provides a sensitive non-linear measure of EEG information content across a range of biologically relevant time-scales. OBJECTIVE: To evaluate MFDE in awake and sleep EEGs as a potential biomarker for AD. METHODS: We analyzed overnight scalp EEGs from 35 cognitively normal healthy controls, 23 participants with mild cognitive impairment (MCI), and 19 participants with mild dementia due to AD. We examined measures of entropy in wake and sleep states, including a slow-to-fast-activity ratio of entropy (SFAR-entropy). We compared SFAR-entropy to linear EEG measures including a slow-to-fast-activity ratio of power spectral density (SFAR-PSD) and relative alpha power, as well as to cognitive function. RESULTS: SFAR-entropy differentiated dementia from MCI and controls. This effect was greatest in REM sleep, a state associated with high cholinergic activity. Differentiation was evident in the whole brain EEG and was most prominent in temporal and occipital regions. Five minutes of REM sleep was sufficient to distinguish dementia from MCI and controls. Higher SFAR-entropy during REM sleep was associated with worse performance on the Montreal Cognitive Assessment. Classifiers based on REM sleep SFAR-entropy distinguished dementia from MCI and controls with high accuracy, and outperformed classifiers based on SFAR-PSD and relative alpha power. CONCLUSION: SFAR-entropy measured in REM sleep robustly discriminates dementia in AD from MCI and healthy controls.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Humans , Alzheimer Disease/complications , Sleep, REM/physiology , Entropy , Electroencephalography , Dementia/complications
13.
Sleep ; 46(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36448766

ABSTRACT

STUDY OBJECTIVES: Dementia is a growing cause of disability and loss of independence in the elderly, yet remains largely underdiagnosed. Early detection and classification of dementia can help close this diagnostic gap and improve management of disease progression. Altered oscillations in brain activity during sleep are an early feature of neurodegenerative diseases and be used to identify those on the verge of cognitive decline. METHODS: Our observational cross-sectional study used a clinical dataset of 10 784 polysomnography from 8044 participants. Sleep macro- and micro-structural features were extracted from the electroencephalogram (EEG). Microstructural features were engineered from spectral band powers, EEG coherence, spindle, and slow oscillations. Participants were classified as dementia (DEM), mild cognitive impairment (MCI), or cognitively normal (CN) based on clinical diagnosis, Montreal Cognitive Assessment, Mini-Mental State Exam scores, clinical dementia rating, and prescribed medications. We trained logistic regression, support vector machine, and random forest models to classify patients into DEM, MCI, and CN groups. RESULTS: For discriminating DEM versus CN, the best model achieved an area under receiver operating characteristic curve (AUROC) of 0.78 and area under precision-recall curve (AUPRC) of 0.22. For discriminating MCI versus CN, the best model achieved an AUROC of 0.73 and AUPRC of 0.18. For discriminating DEM or MCI versus CN, the best model achieved an AUROC of 0.76 and AUPRC of 0.32. CONCLUSIONS: Our dementia classification algorithms show promise for incorporating dementia screening techniques using routine sleep EEG. The findings strengthen the concept of sleep as a window into neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Humans , Aged , Dementia/diagnosis , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Sleep , Brain
14.
Sci Transl Med ; 14(669): eabo2628, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36322627

ABSTRACT

Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.


Subject(s)
Liver Transplantation , Transplantation Tolerance , Humans , Liver Transplantation/methods , T-Lymphocytes, Regulatory , Graft Rejection/prevention & control , Living Donors
15.
Commun Biol ; 5(1): 768, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908100

ABSTRACT

Single cell RNA sequencing has the potential to elucidate transcriptional programs underlying key cellular phenotypes and behaviors. However, many cell phenotypes are incompatible with indiscriminate single cell sequencing because they are rare, transient, or can only be identified by imaging. Existing methods for isolating cells based on imaging for single cell sequencing are technically challenging, time-consuming, and prone to loss because of the need to physically transport single cells. Here, we developed See-N-Seq, a method to rapidly screen cells in microwell plates in order to isolate RNA from specific single cells without needing to physically extract each cell. Our approach involves encapsulating the cell sample in a micropatterned hydrogel with spatially varying porosity to selectively expose specific cells for targeted RNA extraction. Extracted RNA can then be captured, barcoded, reverse transcribed, amplified, and sequenced at high-depth. We used See-N-Seq to isolate and sequence RNA from cell-cell conjugates forming an immunological synapse between T-cells and antigen presenting cells. In the hours after synapsing, we found time-dependent bifurcation of single cell transcriptomic profiles towards Type 1 and Type 2 helper T-cells lineages. Our results demonstrate how See-N-Seq can be used to associate transcriptomic data with specific functions and behaviors in single cells.


Subject(s)
High-Throughput Nucleotide Sequencing , Hydrogels , High-Throughput Nucleotide Sequencing/methods , Microscopy , Porosity , RNA/genetics , Sequence Analysis, RNA/methods
16.
Can J Psychiatry ; 67(12): 881-898, 2022 12.
Article in English | MEDLINE | ID: mdl-35535396

ABSTRACT

BACKGROUND: Youth and young adults have been significantly impacted by the opioid overdose and health crisis in North America. There is evidence of increasing morbidity and mortality due to opioids among those aged 15-29. Our review of key international reports indicates there are few youth-focused interventions and treatments for opioid use. Our scoping review sought to identify, characterize, and qualitatively evaluate the youth-specific clinical and pre-clinical interventions for opioid use among youth. METHOD: We searched MedLine and PsycInfo for articles that were published between 2013 and 2021. Previous reports published in 2015 and 2016 did not identify opioid-specific interventions for youth and we thus focused on the time period following the periods covered by these prior reports. We input three groups of relevant keywords in the aforementioned search engines. Specifically, articles were included if they targeted a youth population (ages 15-25), studied an intervention, and measured impacts on opioid use. RESULTS: We identified 21 studies that examined the impacts of heterogeneous interventions on youth opioid consumption. The studies were classified inductively as psycho-social-educational, pharmacological, or combined pharmacological-psycho-social-educational. Most studies focused on treatment of opioid use disorder among youth, with few studies focused on early or experimental stages of opioid use. A larger proportion of studies focused heavily on male participants (i.e., male gender and/or sex). Very few studies involved and/or included youth in treatment/program development, with one study premised on previous research about sexual minority youth. CONCLUSIONS: Research on treatments and interventions for youth using or at-risk of opioids appears to be sparse. More youth involvement in research and program development is vital. The intersectional and multi-factorial nature of youth opioid use and the youth opioid crisis necessitates the development and evaluation of novel treatments that address youth-specific contexts and needs (i.e., those that address socio-economic, neurobiological, psychological, and environmental factors that promote opioid use among youth).


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Young Adult , Adolescent , Male , Humans , Analgesics, Opioid/adverse effects , Opioid-Related Disorders/therapy , Opioid-Related Disorders/drug therapy
17.
Elife ; 112022 05 10.
Article in English | MEDLINE | ID: mdl-35535854

ABSTRACT

Cell mass and composition change with cell cycle progression. Our previous work characterized buoyant mass dynamics in mitosis (Miettinen et al., 2019), but how dry mass and cell composition change in mitosis has remained unclear. To better understand mitotic cell growth and compositional changes, we develop a single-cell approach for monitoring dry mass and the density of that dry mass every ~75 s with 1.3% and 0.3% measurement precision, respectively. We find that suspension grown mammalian cells lose dry mass and increase dry mass density following mitotic entry. These changes display large, non-genetic cell-to-cell variability, and the changes are reversed at metaphase-anaphase transition, after which dry mass continues accumulating. The change in dry mass density causes buoyant and dry mass to differ specifically in early mitosis, thus reconciling existing literature on mitotic cell growth. Mechanistically, cells in early mitosis increase lysosomal exocytosis, and inhibition of lysosomal exocytosis decreases the dry mass loss and dry mass density increase in mitosis. Overall, our work provides a new approach for monitoring single-cell dry mass and dry mass density, and reveals that mitosis is coupled to extensive exocytosis-mediated secretion of cellular contents.


Subject(s)
Anaphase , Mitosis , Animals , Cell Cycle , Exocytosis , Mammals , Metaphase
18.
JAMA Neurol ; 79(6): 614-622, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35499837

ABSTRACT

Importance: The hippocampus is a highly epileptogenic brain region, yet over 90% of hippocampal epileptiform activity (HEA) cannot be identified on scalp electroencephalogram (EEG) by human experts. Currently, detection of HEA requires intracranial electrodes, which limits our understanding of the role of HEA in brain diseases. Objective: To develop and validate a machine learning algorithm that accurately detects HEA from a standard scalp EEG, without the need for intracranial electrodes. Design, Setting, and Participants: In this diagnostic study, conducted from 2008 to 2021, EEG data were used from patients with temporal lobe epilepsy (TLE) and healthy controls (HCs) to train and validate a deep neural network, HEAnet, to detect HEA on scalp EEG. Participants were evaluated at tertiary-level epilepsy centers at 2 academic hospitals: Massachusetts General Hospital (MGH) or Brigham and Women's Hospital (BWH). Included in the study were patients aged 12 to 78 years with a clinical diagnosis of TLE and HCs without epilepsy. Patients with TLE and HCs with a history of intracranial surgery were excluded from the study. Exposures: Simultaneous intracranial EEG and/or scalp EEG. Main Outcomes and Measures: Performance was assessed using cross-validated areas under the receiver operating characteristic curve (AUC ROC) and precision-recall curve (AUC PR) and additional clinically relevant metrics. Results: HEAnet was trained and validated using data sets that were derived from a convenience sample of 141 eligible participants (97 with TLE and 44 HCs without epilepsy) whose retrospective EEG data were readily available. Data set 1 included the simultaneous scalp EEG and intracranial electrode recordings of 51 patients with TLE (mean [SD] age, 40.7 [15.9] years; 30 men [59%]) at MGH. An automatically generated training data set with 972 095 positive HEA examples was created, in addition to a held-out expert-annotated testing data set with 22 762 positive HEA examples. HEAnet's performance was validated on 2 independent scalp EEG data sets: (1) data set 2 (at MGH; 24 patients with TLE and 20 HCs; mean [SD] age, 42.3 [16.2] years; 17 men [39%]) and (2) data set 3 (at BWH; 22 patients with TLE and 24 HCs; mean [SD] age, 43.0 [14.4] years; 20 men [43%]). For single-event detection of HEA on data set 1, HEAnet achieved a mean (SD) AUC ROC of 0.89 (0.01) and a mean (SD) AUC PR of 0.39 (0.03). On external validation with data sets 2 and 3, HEAnet accurately distinguished TLE from HC (AUC ROC of 0.88 and 0.95, respectively) and predicted epilepsy lateralization with 100% and 92% accuracy, respectively. HEAnet tracked dynamic changes in HEA in response to seizure medication adjustments and performed comparably with human experts in diagnosing TLE from 1-hour scalp EEG recordings, diagnosing TLE in several individuals that experts missed. Without reducing specificity, addition of HEAnet to human expert EEG review increased sensitivity for diagnosing TLE in humans from 50% to 58% to 63% to 67%. Conclusions and Relevance: Results of this diagnostic study suggest that HEAnet provides a novel, noninvasive, quantitative, and clinically relevant biomarker of hippocampal hyperexcitability in humans.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Adult , Electroencephalography/methods , Epilepsy, Temporal Lobe/diagnosis , Female , Hippocampus , Humans , Male , Retrospective Studies , Scalp
19.
Brain ; 145(2): 423-425, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35259227
20.
J Heart Lung Transplant ; 41(5): 641-653, 2022 05.
Article in English | MEDLINE | ID: mdl-34924263

ABSTRACT

BACKGROUND: Telomere dysfunction is associated with idiopathic pulmonary fibrosis (IPF) and worse outcomes following lung transplantation. Telomere dysfunction may impair immunity by upregulating p53 and arresting proliferation, but its influence on allograft-specific immune responses is unknown. We hypothesized that subjects undergoing lung transplantation for IPF would have impaired T cell proliferation to donor antigens. METHODS: We analyzed peripheral blood mononuclear cells (PBMC) from 14 IPF lung transplant recipients and 12 age-matched non-IPF subjects, before and 2 years after transplantation, as well as PBMC from 9 non-transplant controls. We quantified T cell proliferation and cytokine secretion to donor antigens. Associations between PBMC telomere length, measured by quantitative PCR, and T cell proliferation to alloantigens were evaluated with generalized estimating equation models. RESULTS: IPF subjects demonstrated impaired CD8+ T cell proliferation to donor antigens pre-transplant (p < 0.05). IL-2, IL-7, and IL-15 cytokine stimulation restored T cell proliferation, while p53 upregulation blocked proliferation. IPF subjects had shorter PBMC telomere lengths than non-IPF subjects (p < 0.001), and short PBMC telomere length was associated with impaired CD8+ T cell proliferation to alloantigens (p = 0.002). CONCLUSIONS: IPF as an indication for lung transplant is associated with short PBMC telomere length and impaired T cell responses to donor antigens. However, the rescue of proliferation following cytokine exposure suggests that alloimmune anergy could be overcome. Telomere length may inform immunosuppression strategies for IPF recipients.


Subject(s)
Idiopathic Pulmonary Fibrosis , Cytokines , Humans , Idiopathic Pulmonary Fibrosis/surgery , Immunity , Isoantigens , Leukocytes, Mononuclear , Lung , Transplant Recipients , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL
...