Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(4): 2053-2066, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36945772

ABSTRACT

Changes to the number, type, and function of immune cells within the joint-draining lymphatics is a major contributor to the progression of inflammatory arthritis. In particular, there is a significant expansion in pathogenic B cells in the joint-draining lymph node (jdLN). These B cells appear to clog the lymphatic sinuses in the lymph node, inhibit lymph flow, and therefore, reduce the clearance of inflammatory fluid and cells from the joint. Taken together, there is potential to treat inflammatory arthritis more effectively, as well as reduce off-target side effects, with localized delivery of B-cell depleting therapies to the jdLNs. We recently reported that joint-draining lymphatic exposure of biologic disease-modifying anti-rheumatic drugs (DMARDs), including the B cell depletion antibody rituximab, is increased in healthy rats following intra-articular (IA) compared to subcutaneous (SC) or intravenous (IV) administration. This suggests that IA administration of B cell depleting antibodies may increase delivery to target cells in the jdLN and increase the effectiveness of B cell depletion compared to standard SC or IV administration. However, whether enhanced local delivery of DMARDs to the jdLN is also achieved after IA injection in the setting of inflammatory arthritis, where there is inflammation in the joint and jdLN B cell expansion is unknown. We, therefore, assessed the lymph node distribution, absorption and plasma pharmacokinetics, and B cell depletion at different sites after IA, SC, or IV administration of a fluorescently labeled mouse anti-CD20 B cell depleting antibody (Cy5-αCD20) in healthy mice compared to mice with collagen-induced arthritis (CIA). The absorption and plasma pharmacokinetics of Cy5-αCD20 appeared unaltered in mice with CIA whereas distribution of Cy5-αCD20 to the jdLNs was generally increased in mice with CIA, regardless of the route of administration. However, IA administration led to greater and more specific exposure to the jdLNs. Consistent with increased Cy5-αCD20 in the jdLNs of CIA compared to healthy mice, there was a greater reduction in jdLN weight and a trend toward greater jdLN B cell depletion at 24 h compared to 4 h after IA compared to SC and IV administration. Taken together, this data supports the potential to improve local efficacy of B cell depletion therapies through a jdLN-directed approach which will enable a reduction in dose and systemic toxicities.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Mice , Rats , Animals , Antirheumatic Agents/pharmacokinetics , Injections, Intra-Articular , Antibodies/therapeutic use , Lymph Nodes
2.
Eur J Pharm Biopharm ; 173: 34-44, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35219864

ABSTRACT

Recent reports have highlighted the role of the lymphatic system and its resident immune cells in the development of inflammatory arthritis. Directing therapeutics to the joint-draining lymphatics could improve access to lymphatic-resident pro-inflammatory immune cells, improve local treatment efficacy and enable the administration of lower drug doses to achieve the same or a better effect. Here, we assessed the delivery of disease modifying anti-rheumatic drugs (DMARDs) to the joint-draining lymphatics as a function of therapeutic size and route of administration (intravenous (IV), subcutaneous (SC) and intra-articular (IA) injection). The model drugs included the low molecular weight conventional DMARD methotrexate and the larger biologic DMARDs etanercept and rituximab. Plasma pharmacokinetics, thoracic lymph fluid concentrations and lymph node deposition of the DMARDS were assessed in male Sprague-Dawley rats after IV, IA or SC injection at or near the knee joint. Administration by IA injection resulted in rapid and higher absorption of all drugs into the systemic circulation, compared to SC administration. The large DMARDs etanercept and rituximab were preferentially transported from the IA and SC injection sites via the lymphatics, but a greater percentage of the absorbed dose was recovered in lymph after IA (49-58%) compared to SC administration (17-20%). Methotrexate was almost exclusively transported from the injection site via the blood after IA injection, consistent with its small size which presents minimal barriers to diffusion across the synovium into blood vessels. Importantly, IA but not SC administration resulted in biologic DMARD access to the knee joint-draining iliac lymph fluid and iliac lymph node that is dysfunctional in inflammatory knee arthritis. Overall, IA injection of biologic DMARDs may provide a simple strategy to improve lymph and lymph node access and thus the treatment of inflammatory arthritis.


Subject(s)
Antirheumatic Agents , Biological Products , Animals , Biological Products/therapeutic use , Injections, Intra-Articular , Lymphatic System , Male , Rats , Rats, Sprague-Dawley
3.
Nat Metab ; 3(9): 1175-1188, 2021 09.
Article in English | MEDLINE | ID: mdl-34545251

ABSTRACT

Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.


Subject(s)
Insulin Resistance , Lymphatic Vessels/physiopathology , Mesentery/physiopathology , Obesity, Abdominal/physiopathology , Adult , Aged , Animals , Cyclooxygenase 2/metabolism , Female , Humans , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Obesity, Abdominal/therapy , Rats , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor C/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...