Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(16): eadg6618, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075114

ABSTRACT

The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.


Subject(s)
Blood-Brain Barrier , Carbonic Anhydrase IV , Mice , Humans , Animals , Blood-Brain Barrier/metabolism , Carbonic Anhydrase IV/genetics , Carbonic Anhydrase IV/metabolism , Brain/metabolism , Gene Transfer Techniques , Primates/genetics , Dependovirus/genetics , Dependovirus/metabolism
2.
Cell ; 182(4): 1027-1043.e17, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32822567

ABSTRACT

Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.


Subject(s)
Ligands , Protein Interaction Maps/physiology , Receptors, Cell Surface/metabolism , DCC Receptor/chemistry , DCC Receptor/metabolism , Humans , Phylogeny , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/classification , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Signaling Lymphocytic Activation Molecule Family/chemistry , Signaling Lymphocytic Activation Molecule Family/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...