Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38619022

ABSTRACT

New World mabuyine skinks are a diverse radiation of morphologically cryptic lizards with unique reproductive biologies. Recent studies examining population-level data (morphological, ecological, and genomic) have uncovered novel biodiversity and phenotypes, including the description of dozens of new species and insights into the evolution of their highly complex placental structures. Beyond the potential for this diverse group to serve as a model for the evolution of viviparity in lizards, much of the taxonomic diversity is concentrated in regions experiencing increasing environmental instability from climate and anthropogenic change. Consequently, a better understanding of genome structure and diversity will be an important tool in the adaptive management and conservation of this group. Skinks endemic to Caribbean islands are particularly vulnerable to global change with several species already considered likely extinct and several remaining species either endangered or threatened. Combining PacBio long-read sequencing, Hi-C, and RNAseq data, here we present the first genomic resources for this group by describing new chromosome-level reference genomes for the Puerto Rican Skink Spondylurus nitidus and the Culebra Skink S. culebrae. Results indicate two high quality genomes, both ∼1.4 Gb, assembled nearly telomere to telomere with complete mitochondrion assembly and annotation.


Subject(s)
Genome , Lizards , Lizards/genetics , Animals , Chromosomes/genetics , Viviparity, Nonmammalian/genetics , Female , Caribbean Region
2.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38652799

ABSTRACT

Incredibly powerful whole genome studies of conservation genetics, evolution, and biogeography become possible for non-model organisms when reference genomes are available. Here, we report the sequence and assembly of the whole genome of the little vermilion flycatcher (Pyrocephalus nanus; family Tyrannidae), which is an endemic, endangered, and declining species of the Galapagos Islands. Using PacBio HiFi reads to assemble long contigs and Hi-C reads for scaffolding, we assembled a genome of 1.07 Gb comprising 267 contigs in 152 scaffolds, scaffold N50 74 M, contig N50 17.8 M, with 98.9% assigned to candidate chromosomal sequences and 99.72% of the BUSCO passeriformes 10,844 single-copy orthologs present. In addition, we used the novel HiFiMiTie pipeline to fully assemble and verify all portions of the mitochondrial genome from HiFi reads, obtaining a mitogenome of 17,151 bases, containing 13 protein-coding genes, 22 tRNAs, 2 rRNAs, two control regions, and a unique structure of control region duplication and repeats. These genomes will be a critical tool for much-needed studies of phylogenetics, population genetics, biogeography, and conservation genetics of Pyrocephalus and related genera. This genome and other studies that use it will be able to provide recommendations for conservation management, taxonomic improvement, and to understand the evolution and diversification of this genus within the Galapagos Islands.


Subject(s)
Endangered Species , Genome, Mitochondrial , Animals , Songbirds/genetics , Ecuador , Phylogeny , Genome , Conservation of Natural Resources
3.
Sci Rep ; 14(1): 7285, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538660

ABSTRACT

Tetraopes longhorn beetles are known for their resistance to milkweed plant toxins and their coevolutionary dynamics with milkweed plants (Asclepias). This association is considered a textbook example of coevolution, in which each species of Tetraopes is specialized to feed on one or a few species of Asclepias. A major challenge to investigating coevolutionary hypotheses and conducting molecular ecology studies lies in the limited understanding of the evolutionary history and biogeographical patterns of Tetraopes. By integrating genomic, morphological, paleontological, and geographical data, we present a robust phylogeny of Tetraopes and their relatives, using three inference methods with varying subsets of data, encompassing 2-12 thousand UCE loci. We elucidate the diversification patterns of Tetraopes species across major biogeographical regions and their colonization of the American continent. Our findings suggest that the genus originated in Central America approximately 21 million years ago during the Miocene and diversified from the Mid-Miocene to the Pleistocene. These events coincided with intense geological activity in Central America. Additionally, independent colonization events in North America occurred from the Late Miocene to the early Pleistocene, potentially contributing to the early diversification of the group. Our data suggest that a common ancestor of Tetraopini migrated into North America, likely facilitated by North Atlantic land bridges, while closely related tribes diverged in Asia and Europe during the Paleocene. Establishing a robust and densely sampled phylogeny of Tetraopes beetles provides a foundation for investigating micro- and macroevolutionary phenomena, including clinal variation, coevolution, and detoxification mechanisms in this ecologically important group.


Subject(s)
Coleoptera , Animals , Phylogeny , Coleoptera/genetics , Biological Evolution , Geography , North America , Phylogeography
4.
EMBO J ; 43(10): 1919-1946, 2024 May.
Article in English | MEDLINE | ID: mdl-38360993

ABSTRACT

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Subject(s)
Ubiquitin-Activating Enzymes , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/genetics , Humans , Mutation, Missense , Ubiquitin/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
5.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873213

ABSTRACT

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.

6.
Syst Biol ; 72(3): 516-529, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-36124771

ABSTRACT

The evolutionary origins of mimicry in the Easter egg weevil, Pachyrhynchus, have fascinated researchers since first noted more than a century ago by Alfred Russel Wallace. Müllerian mimicry, or mimicry in which 2 or more distasteful species look similar, is widespread throughout the animal kingdom. Given the varied but discrete color patterns in Pachyrhynchus, this genus presents one of the best opportunities to study the evolution of both perfect and imperfect mimicry. We analyzed more than 10,000 UCE loci using a novel partitioning strategy to resolve the relationships of closely related species in the genus. Our results indicate that many of the mimetic color patterns observed in sympatric species are due to convergent evolution. We suggest that this convergence is driven by positive frequency-dependent selection. [Biogeography, discrete traits, frequency-dependent selection, mimicry, partitioning, Philippines, polymorphic, UCE.].


Subject(s)
Biological Mimicry , Coleoptera , Weevils , Animals , Weevils/genetics , Phylogeny , Philippines
7.
Ecol Evol ; 12(3): e8625, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342556

ABSTRACT

Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.

9.
PLoS Genet ; 17(8): e1009745, 2021 08.
Article in English | MEDLINE | ID: mdl-34460814

ABSTRACT

Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.


Subject(s)
Coleoptera/genetics , Synteny/genetics , Weevils/genetics , Animals , Biological Evolution , Chromosomes/genetics , Evolution, Molecular , Genome, Insect/genetics , Genomics/methods , Phylogeny
10.
BMC Ecol Evol ; 21(1): 51, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823805

ABSTRACT

BACKGROUND: The New Guinean archipelago has been shaped by millions of years of plate tectonic activity combined with long-term fluctuations in climate and sea level. These processes combined with New Guinea's location at the tectonic junction between the Australian and Pacific plates are inherently linked to the evolution of its rich endemic biota. With the advent of molecular phylogenetics and an increasing amount of geological data, the field of New Guinean biogeography begins to be reinvigorated. RESULTS: We inferred a comprehensive dated molecular phylogeny of endemic diving beetles to test historical hypotheses pertaining to the evolution of the New Guinean biota. We used geospatial analysis techniques to compare our phylogenetic results with a newly developed geological terrane map of New Guinea as well as the altitudinal and geographic range of species ( https://arcg.is/189zmz ). Our divergence time estimations indicate a crown age (early diversification) for New Guinea Exocelina beetles in the mid-Miocene ca. 17 Ma, when the New Guinean orogeny was at an early stage. Geographic and geological ancestral state reconstructions suggest an origin of Exocelina ancestors on the eastern part of the New Guinean central range on basement rocks (with a shared affinity with the Australian Plate). Our results do not support the hypothesis of ancestors migrating to the northern margin of the Australian Plate from Pacific terranes that incrementally accreted to New Guinea over time. However, our analyses support to some extent a scenario in which Exocelina ancestors would have been able to colonize back and forth between the amalgamated Australian and Pacific terranes from the Miocene onwards. Our reconstructions also do not support an origin on ultramafic or ophiolite rocks that have been colonized much later in the evolution of the radiation. Macroevolutionary analyses do not support the hypothesis of heterogeneous diversification rates throughout the evolution of this radiation, suggesting instead a continuous slowdown in speciation. CONCLUSIONS: Overall, our geospatial analysis approach to investigate the links between the location and evolution of New Guinea's biota with the underlying geology sheds a new light on the patterns and processes of lineage diversification in this exceedingly diverse region of the planet.


Subject(s)
Coleoptera , Animals , Australia , Biota , New Guinea , Phylogeny
11.
Genome Biol Evol ; 12(4): 456-462, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32227195

ABSTRACT

Among vertebrates, turtles have many unique characteristics providing biologists with opportunities to study novel evolutionary innovations and processes. We present here a high-quality, partially phased, and chromosome-level Red-Eared Slider (Trachemys scripta elegans, TSE) genome as a reference for future research on turtle and tetrapod evolution. This TSE assembly is 2.269 Gb in length, has one of the highest scaffold N50 and N90 values of any published turtle genome to date (N50 = 129.68 Mb and N90 = 19 Mb), and has a total of 28,415 annotated genes. We introduce synteny analyses using BUSCO single-copy orthologs, which reveal two chromosome fusion events accounting for differences in chromosome counts between emydids and other cryptodire turtles and reveal many fission/fusion events for birds, crocodiles, and snakes relative to TSE. This annotated chromosome-level genome will provide an important reference genome for future studies on turtle, vertebrate, and chromosome evolution.


Subject(s)
Chromosomes/genetics , Genome , Genomics/standards , Molecular Sequence Annotation , Turtles/genetics , Animals , Reference Standards
12.
Mol Phylogenet Evol ; 137: 86-103, 2019 08.
Article in English | MEDLINE | ID: mdl-31022515

ABSTRACT

Our understanding of the origin and evolution of the astonishing Neotropical biodiversity remains somewhat limited. In particular, decoupling the respective impacts of biotic and abiotic factors on the macroevolution of clades is paramount to understand biodiversity assemblage in this region. We present the first comprehensive molecular phylogeny for the Neotropical Anaeini leafwing butterflies (Nymphalidae, Charaxinae) and, applying likelihood-based methods, we test the impact of major abiotic (Andean orogeny, Central American highland orogeny, Proto-Caribbean seaway closure, Quaternary glaciations) and biotic (host plant association) factors on their macroevolution. We infer a robust phylogenetic hypothesis for the tribe despite moderate support in some derived clades. Our phylogenetic inference recovers the genus Polygrapha Staudinger, [1887] as polyphyletic, rendering the genera FountaineaRydon, 1971 and Memphis Hübner, [1819] paraphyletic. Consequently, we transfer Polygrapha tyrianthina (Salvin & Godman, 1868) comb. nov. to Fountainea and Polygrapha xenocrates (Westwood, 1850) comb. nov. to Memphis. We infer an origin of the group in the late Eocene ca. 40 million years ago in Central American lowlands which at the time were separated from South America by the Proto-Caribbean seaway. The biogeographical history of the group is very dynamic, with several oversea colonization events from Central America into the Chocó and Andean regions during intense stages of Andean orogeny. These events coincide with the emergence of an archipelagic setting between Central America and northern South America in the mid-Miocene that likely facilitated dispersal across the now-vanished Proto-Caribbean seaway. The Amazonian region also played a central role in the diversification of the Anaeini, acting both as a museum and a cradle of diversity. We recover a diversification rate shift in the Miocene within the species-rich genus Memphis. State speciation and extinction models recover a significant relationship between this rate shift and host plant association, indicating a positive role on speciation rates of a switch between Malpighiales and new plant orders. We find less support for a role of abiotic factors including the progressive Andean orogeny, Proto-Caribbean seaway closure and Quaternary glaciations. Miocene host plant shifts possibly acted in concert with abiotic and/or biotic factors to shape the diversification of Anaeini butterflies.


Subject(s)
Butterflies/classification , Flight, Animal/physiology , Oceans and Seas , Phylogeny , Tropical Climate , Wings, Animal/physiology , Animals , Biodiversity , Caribbean Region , Genetic Speciation , Likelihood Functions , Phylogeography , Time Factors
13.
PLoS One ; 13(9): e0205049, 2018.
Article in English | MEDLINE | ID: mdl-30261064

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0188044.].

14.
Mol Ecol ; 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30010208

ABSTRACT

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

15.
Mol Ecol ; 27(17): 3541-3554, 2018 09.
Article in English | MEDLINE | ID: mdl-30030868

ABSTRACT

Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well-differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage-idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine-scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.


Subject(s)
Coleoptera/classification , Ecosystem , Genetics, Population , Water Movements , Animals , Biodiversity , New Guinea , Phylogeny , Phylogeography , Rivers , Tropical Climate
16.
PLoS One ; 12(11): e0188044, 2017.
Article in English | MEDLINE | ID: mdl-29166661

ABSTRACT

Weevils (Curculionoidea) comprise one of the most diverse groups of organisms on earth. There is hardly a vascular plant or plant part without its own species of weevil feeding on it and weevil species diversity is greater than the number of fishes, birds, reptiles, amphibians and mammals combined. Here, we employ ultraconserved elements (UCEs) designed for beetles and a novel partitioning strategy of loci to help resolve phylogenetic relationships within the radiation of Australasian smurf-weevils (Eupholini). Despite being emblematic of the New Guinea fauna, no previous phylogenetic studies have been conducted on the Eupholini. In addition to a comprehensive collection of fresh specimens, we supplement our taxon sampling with museum specimens, and this study is the first target enrichment phylogenomic dataset incorporating beetle specimens from museum collections. We use both concatenated and species tree analyses to examine the relationships and taxonomy of this group. For species tree analyses we present a novel partitioning strategy to better model the molecular evolutionary process in UCEs. We found that the current taxonomy is problematic, largely grouping species on the basis of similar color patterns. Finally, our results show that most loci required multiple partitions for nucleotide rate substitution, suggesting that single partitions may not be the optimal partitioning strategy to accommodate rate heterogeneity for UCE loci.


Subject(s)
Conserved Sequence/genetics , Phylogeny , Weevils/genetics , Animals , Asia , Australia , Base Sequence , Bayes Theorem , Genetic Loci , Likelihood Functions , Linear Models , Species Specificity
17.
PLoS One ; 11(5): e0155497, 2016.
Article in English | MEDLINE | ID: mdl-27191722

ABSTRACT

The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5' fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.


Subject(s)
DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Insecta/classification , Insecta/genetics , Animals , Arthropods/classification , Arthropods/genetics , Biodiversity , Cluster Analysis , Cytochromes c/genetics , DNA Barcoding, Taxonomic/methods , Databases, Nucleic Acid , Germany , Workflow
18.
Evolution ; 66(9): 2815-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22946805

ABSTRACT

Past geological and climatological processes shape extant biodiversity. In the Hawaiian Islands, these processes have provided the physical environment for a number of extensive adaptive radiations. Yet, single species that occur throughout the islands provide some of the best cases for understanding how species respond to the shifting dynamics of the islands in the context of colonization history and associated demographic and adaptive shifts. Here, we focus on the Hawaiian happy-face spider, a single color-polymorphic species, and use mitochondrial and nuclear allozyme markers to examine (1) how the mosaic formation of the landscape has dictated population structure, and (2) how cycles of expansion and contraction of the habitat matrix have been associated with demographic shifts, including a "quantum shift" in the genetic basis of the color polymorphism. The results show a marked structure among populations consistent with the age progression of the islands. The finding of low genetic diversity at the youngest site coupled with the very high diversity of haplotypes on the slightly older substrates that are highly dissected by recent volcanism suggests that the mosaic structure of the landscape may play an important role in allowing differentiation of the adaptive color polymorphism.


Subject(s)
Biological Evolution , Geography , Pigmentation/genetics , Polymorphism, Genetic , Spiders/genetics , Adaptation, Biological , Alleles , Animal Migration , Animals , DNA, Mitochondrial , Female , Founder Effect , Haplotypes , Hawaii , Isoenzymes , Male , Molecular Sequence Data , Phylogeography , Population Dynamics
19.
Mol Ecol ; 21(17): 4242-56, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22849440

ABSTRACT

Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531-281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in F(ST) is explained by these models, with geographical distance and least-cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high-elevation environments.


Subject(s)
Butterflies/genetics , Environment , Genetic Variation , Genetics, Population , Animals , Bayes Theorem , California , Geography , Microsatellite Repeats , Molecular Sequence Data , Population Density , Regression Analysis
20.
Mol Ecol ; 20(2): 206-18, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21121989

ABSTRACT

Genetically controlled colour polymorphisms provide a physical manifestation of the operation of selection and how this can vary according to the spatial or temporal arrangement of phenotypes, or their frequency in a population. Here, we examine the role of selection in shaping the exuberant colour polymorphism exhibited by the spider Theridion californicum. This species is part of a system in which several distantly related spiders in the same lineage, but living in very different geographical areas, exhibit remarkably convergent polymorphisms. These polymorphisms are characterized by allelic inheritance and the presence of a single common cryptic morph and, in the case of T. californicum and its congener the Hawaiian happy-face spider Theridion grallator, numerous rare patterned morphs. We compare population differentiation estimated from colour phenotypic data to differentiation at neutral amplified fragment length polymorphisms (AFLP) loci and demonstrate that the colour polymorphism appears to be maintained by balancing selection. We also examine the patterns of selection in the genome-wide sample of AFLP loci and compare approaches to detecting signatures of selection in this context. Our results have important implications regarding balancing selection, suggesting that selective agents can act in a similar manner across disparate taxa in globally disjunct locales resulting in parallel evolution of exuberant polymorphism.


Subject(s)
Pigmentation/genetics , Polymorphism, Genetic , Selection, Genetic , Spiders/genetics , Alleles , Amplified Fragment Length Polymorphism Analysis , Animals , Biological Evolution , California , Genetic Variation , Genotype , Geography , Metagenomics , Phenotype , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...