Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-26, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619217

ABSTRACT

Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.

2.
Genes Environ ; 46(1): 4, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303058

ABSTRACT

BACKGROUND: Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells. RESULTS: The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process. CONCLUSION: The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.

3.
Future Med Chem ; 16(1): 75-99, 2024 01.
Article in English | MEDLINE | ID: mdl-38205612

ABSTRACT

Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.


Subject(s)
Lipopolysaccharides , Monocytes , Humans , Monocytes/metabolism , Lipopolysaccharides/pharmacology , Phosphatidylinositol 3-Kinases , Flavonoids/pharmacology , Macrophages/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , NF-kappa B/metabolism
4.
Comput Biol Chem ; 103: 107811, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36645937

ABSTRACT

Metisa plana (Lepidoptera: Psychidae) bagworm is a leaf-eater caterpillar ubiquitously found as a damaging pest in oil palm plantations, specifically in Malaysia. Various strategies have been implemented, including the usage of chemical insecticides. However, the main challenges include the development of insecticide resistance and its detrimental effects on the environment and non-target organisms. Therefore, a biorational insecticide is introduced by targeting the juvenile hormone (JH) biosynthetic pathway, which is mainly present in the insect and vital for the insect's growth, diapause, metamorphosis, and adult reproduction. This study aimed to investigate the potential inhibitor for the rate-limiting enzyme involved in the JH pathway known as farnesol dehydrogenase. A 255 amino acids sequence encoded for the putative M. plana farnesol dehydrogenase (MpFolDH) open reading frame had been identified and isolated. The three-dimensional structure of MpFolDH was predicted to have seven ß- sheets with α-helices at both sides, showing typical characteristics for classical short-chain dehydrogenase and associated with oxidoreductase activity. Then, the ensemble-based virtual screening was conducted based on the ZINC20 database, in which 43 768 compounds that fulfilled pesticide-likeness criteria were screened by site-specific molecular docking. After a short molecular dynamics simulation (5 ns) was conducted towards 102 compounds, only the top 10 compounds based on their most favourable binding energy were selected for a more extended simulation (100 ns). Based on the protein-ligand stability, protein compactness, residues rigidity, binding interaction, binding energy throughout the 100 ns simulation, and physicochemical analysis, ZINC000408743205 was selected as a potential inhibitor for this enzyme. Amino acids decomposition analysis indicates Ile18, Ala95, Val198 and Val202 were the critical contributor residues for MpFolDH-inhibitors(s) complex.


Subject(s)
Insecticides , Lepidoptera , Animals , Molecular Docking Simulation , Insecta , Juvenile Hormones , Molecular Dynamics Simulation
5.
Metabolites ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677038

ABSTRACT

The current therapeutic approach for gout is through the inhibition of the xanthine oxidase (XO) enzyme. Allopurinol, a clinically used XO inhibitor, causes many side effects. This study aimed to investigate the interaction between XO and inhibitors identified from Chrysanthemum morifolium by using computational simulation and multispectroscopic methods. The crude extract, petroleum ether, ethyl acetate (EtOAc), and residual fractions were subjected to an XO inhibitory assay and 1H NMR analysis. The EtOAc fraction was shown to be strongly correlated to the XO inhibitory activity by using PLS biplot regression analysis. Kaempferol, apigenin, homovanillic acid, and trans-cinnamic acid were suggested to contribute to the XO inhibitory activity. Molecular docking showed that kaempferol and apigenin bound to the active site of XO with their benzopyran moiety sandwiched between Phe914 and Phe1009, interacting with Thr1010 and Arg880 by hydrogen bonding. Kaempferol showed the lowest binding energy in molecular dynamic simulation. The residues that contributed to the binding energy were Glu802, Arg880, Phe 914, and Phe 1009. A fluorescence quenching study showed a combination of static and dynamic quenching for all four inhibitors binding to XO. Circular dichroism spectroscopy revealed that there was no major change in XO conformation after binding with each inhibitor.

6.
Nat Prod Res ; 37(17): 2849-2861, 2023.
Article in English | MEDLINE | ID: mdl-36398788

ABSTRACT

This study focused on the synthesis of 1,3-dihydroxyxanthone (1) and its new derivatives with alkyl (2a-2f), alkenyl (2 g-2k), alkynyl (2 l-2n), and alkylated phenyl (2o-2r) groups at C3 position. The structures of these compounds were confirmed by MS, NMR, and FTIR spectroscopic data. All the substituted xanthones (2a-2r) showed significantly stronger acetylcholinesterase (AChE) inhibitory activities than 1. Compounds 2g and 2j exhibited the strongest activities with the IC50 values of 20.8 and 21.5 µM and their enzyme kinetic analyses indicated a mixed-mode inhibition. Molecular docking study revealed that 2g binds favourably to the active site of AChE via π-π stacking and hydrogen bonding from the xanthone ring, in addition to π-alkyl interaction from the substituent group. These xanthone derivatives are potential lead compounds to be further developed into Alzheimer's disease drugs.

7.
Insect Mol Biol ; 32(2): 143-159, 2023 04.
Article in English | MEDLINE | ID: mdl-36454188

ABSTRACT

In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.


Subject(s)
Farnesol , Insecticides , Humans , Animals , Farnesol/metabolism , Phylogeny , Acetone , NADP , Insecta/metabolism
8.
Sci Rep ; 12(1): 13131, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907913

ABSTRACT

Curcumin has demonstrated potential cytotoxicity across various cell lines despite its poor bioavailability and rapid metabolism. Therefore, our group have synthesized curcuminoid analogues with piperidone derivatives, FLDP-5 and FLDP-8 to overcome these limitations. In this study, the analogues were assessed on LN-18 human glioblastoma cells in comparison to curcumin. Results from cytotoxicity assessment showed that FLDP-5 and FLDP-8 curcuminoid analogues caused death in LN-18 cells in a concentration-dependent manner after 24-h treatment with much lower IC50 values of 2.5 µM and 4 µM respectively, which were more potent compared to curcumin with IC50 of 31 µM. Moreover, a significant increase (p < 0.05) in the level of superoxide anion and hydrogen peroxide upon 2-h and 6-h treatment confirmed the oxidative stress involvement in the cell death process induced by these analogues. These analogues also showed potent anti-migratory effects through inhibition of LN-18 cells' migration and invasion. In addition, cell cycle analysis showed that these analogues are capable of inducing significant (p < 0.05) S-phase cell cycle arrest during the 24-h treatment as compared to untreated, which explained the reduced proliferation indicated by MTT assay. In conclusion, these curcuminoid analogues exhibit potent anti-cancer effects with anti-proliferative and anti-migratory properties towards LN-18 cells as compared to curcumin.


Subject(s)
Antineoplastic Agents , Curcumin , Glioblastoma , Piperidones , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Curcumin/pharmacology , Glioblastoma/drug therapy , Humans , Piperidones/pharmacology
9.
Front Pharmacol ; 13: 820969, 2022.
Article in English | MEDLINE | ID: mdl-35140617

ABSTRACT

Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.

10.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832956

ABSTRACT

Widespread resistance of Plasmodium falciparum to current artemisinin-based combination therapies necessitate the discovery of new medicines. Pharmacophoric hybridization has become an alternative for drug resistance that lowers the risk of drug-drug adverse interactions. In this study, we synthesized a new series of hybrids by covalently linking the scaffolds of pyrano[2,3-c]pyrazole with 4-aminoquinoline via an ethyl linker. All synthesized hybrid molecules were evaluated through in vitro screenings against chloroquine-resistant (K1) and -sensitive (3D7) P. falciparum strains, respectively. Data from in vitro assessments showed that hybrid 4b displayed significant antiplasmodial activities against the 3D7 strain (EC50 = 0.0130 ± 0.0002 µM) and the K1 strain (EC50 = 0.02 ± 0.01 µM), with low cytotoxic effect against Vero mammalian cells. The high selectivity index value on the 3D7 strain (SI > 1000) and the K1 strain (SI > 800) and the low resistance index value from compound 4b suggested that the pharmacological effects of this compound were due to selective inhibition on the 3D7 and K1 strains. Molecular docking analysis also showed that 4b recorded the highest binding energy on P. falciparum lactate dehydrogenase. Thus, P. falciparum lactate dehydrogenase is considered a potential molecular target for the synthesized compound.

11.
Plant Physiol Biochem ; 161: 143-155, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588320

ABSTRACT

The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.


Subject(s)
Cacao , Computational Biology , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases , Phylogeny
12.
Molecules ; 26(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525733

ABSTRACT

Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.


Subject(s)
Anti-Allergic Agents/pharmacology , Hypersensitivity/drug therapy , Phyllanthus/chemistry , Plant Extracts/pharmacology , Animals , Anti-Allergic Agents/chemistry , Biomarkers/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Glucosides/pharmacology , Histamine Antagonists/pharmacology , Hydrolyzable Tannins/pharmacology , Hypersensitivity/metabolism , Ketotifen/pharmacology , Lignans/pharmacology , Mast Cells/drug effects , Mast Cells/metabolism , Plant Extracts/chemistry , Rats , Receptors, Histamine/metabolism
13.
J Enzyme Inhib Med Chem ; 36(1): 627-639, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33557647

ABSTRACT

A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Xanthones/pharmacology , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Electrophorus , Horses , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Xanthones/chemical synthesis , Xanthones/chemistry
14.
Eur J Med Chem ; 207: 112812, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32937283

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive type of cancer, with a high risk of death on recurrence. To date, there is a lack of approved targeted agents for the treatment of the disease. Patients with TNBC continue to depend on surgery, chemotherapy, and radiotherapy, all of which have a wide side effect profile. In the present review, we highlight the current progress and exciting developments in the small-molecule targeted therapy for the treatment of TNBC. Finally, we also discuss the prospect of combining targeted therapy and immunotherapy for the effective treatment of TNBC.


Subject(s)
Drug Discovery , Small Molecule Libraries/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Humans , Immunotherapy , Molecular Targeted Therapy , Small Molecule Libraries/therapeutic use , Triple Negative Breast Neoplasms/immunology
15.
Pestic Biochem Physiol ; 165: 104556, 2020 May.
Article in English | MEDLINE | ID: mdl-32359543

ABSTRACT

Glyphosate-resistant populations of Eleusine indica are widespread in several states of Malaysia. A whole-plant bioassay confirmed that eight out of the 17 populations tested were resistant to glyphosate at double the recommended rate of 2.44 kg ha-1. Screening with allele-specific PCR (AS-PCR) revealed that resistant plants contained an EPSPS gene with either the homozygous S/S-106 or the heterozygous P/S-106 alleles. All susceptible plants contained only the homozygous P/P-106 allele. In addition, DNA sequences of the full-length EPSPS gene from one susceptible (SB) and four resistant (R2, R6, R8 and R11) populations revealed an amino acid substitution of T102I in all the resistant plants, while another substitution of P381L was only found in resistant populations R6 and R11. The significance of the P381L mutation was examined by Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and residue interaction network (RIN) analyses, which suggests the P381L mutation may contribute to resistance. Mutations at 102 and 106 occur widely in the EPSPS gene of glyphosate-resistant E. indica populations from Malaysia with the TIPS mutation. In addition, the P381L mutation could also contribute to resistance.


Subject(s)
Eleusine , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase , Gene Expression Regulation, Plant , Glycine/analogs & derivatives , Herbicide Resistance , Malaysia , Mutation , Glyphosate
16.
BMC Complement Altern Med ; 19(1): 361, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31829185

ABSTRACT

BACKGROUND: Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds. METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release. RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), ß-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate. CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.


Subject(s)
Anti-Allergic Agents/pharmacology , Mast Cells/drug effects , Moringa oleifera , Plant Extracts/pharmacology , Animals , Anti-Allergic Agents/analysis , Anti-Allergic Agents/chemistry , Cell Degranulation/drug effects , Cell Line, Tumor , Cytokines/metabolism , Fruit/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats
17.
Eur J Med Chem ; 183: 111704, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31557608

ABSTRACT

Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Curcumin/pharmacology , Neoplasms/drug therapy , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Curcumin/chemical synthesis , Curcumin/chemistry , Humans , Molecular Structure
18.
Molecules ; 23(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274341

ABSTRACT

A new series of 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) analogues were synthesized and evaluated for their lipoxygenase (LOX) inhibitory activity. Prenylated analogues 4a⁻g (half maximal inhibitory concentration (IC50) values ranging from 35 µ M to 95 µ M) did not exhibit better inhibitory activity than tHGA (3a) (IC50 value: 23.6 µ M) due to the reduction in hydrophobic interaction when the alkyl chain length was reduced. One geranylated analogue, 3d, with an IC50 value of 15.3 µ M, exhibited better LOX inhibitory activity when compared to tHGA (3a), which was in agreement with our previous findings. Kinetics study showed that the most active analogue (3e) and tHGA (3a) acted as competitive inhibitors. The combination of in silico approaches of molecular docking and molecular dynamic simulation revealed that the lipophilic nature of these analogues further enhanced the LOX inhibitory activity. Based on absorption, distribution, metabolism, excretion, and toxicity (ADMET) and toxicity prediction by komputer assisted technology (TOPKAT) analyses, all geranylated analogues (3a⁻g) showed no hepatotoxicity effect and were biodegradable, which indicated that they could be potentially safe drugs for treating inflammation.


Subject(s)
Acetophenones , Glycine max/enzymology , Lipoxygenase Inhibitors , Lipoxygenase/chemistry , Soybean Proteins , Acetophenones/chemical synthesis , Acetophenones/chemistry , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Soybean Proteins/antagonists & inhibitors , Soybean Proteins/chemistry , Structure-Activity Relationship
19.
Molecules ; 23(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642589

ABSTRACT

In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (ß-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Curcumin/analogs & derivatives , Cyclohexanones/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Curcumin/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 9/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism
20.
Bioorg Med Chem Lett ; 28(3): 302-309, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29292226

ABSTRACT

A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Pentanols/pharmacology , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Structure , Pentanols/chemical synthesis , Pentanols/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...