Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vox Sang ; 115(8): 729-734, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32633835

ABSTRACT

RBC transfusion is associated with increased morbidity and mortality in critically ill patients. Endothelial cell necroptosis and subsequent damage-associated molecular pattern (DAMP) release has been identified as a mechanism of injury following RBC transfusion. Mounting evidence implicates the pro-inflammatory pattern recognition receptor, Receptor for Advanced Glycation End Products (RAGE), in initiating cell death programmes such as necroptosis. Here, we demonstrate the role of RAGE in endothelial necroptosis, as deletion of RAGE attenuates necroptotic cell death in response to TNFα, LPS or CpG-DNA. We show direct interaction of RAGE with the critical mediator of necroptosis, Receptor Interacting Protein Kinase 3 (RIPK3), during necroptosis. Furthermore, we observe decreased plasma High Mobility Group Box 1 (HMGB1) and RIPK3 levels in RAGE deficient mice compared to WT mice post-transfusion, substantiating the role for RAGE in transfusion-induced DAMP release in vivo. Collectively, these findings underscore RAGE as an essential mediator of regulated necrosis and post-transfusion DAMP release. Further studies to understand the role of RAGE and the necroptotic pathway in transfusion-induced organ injury may offer key targets to mitigate transfusion-related risks, including the risk of ARDS, in susceptible hosts.


Subject(s)
Endothelial Cells/physiology , Erythrocyte Transfusion/adverse effects , Necrosis/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Female , HMGB1 Protein , Mice , Mice, Inbred C57BL , Necrosis/etiology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
2.
medRxiv ; 2020 May 22.
Article in English | MEDLINE | ID: mdl-32511554

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multi-organ failure characterized by respiratory insufficiency, arrhythmias, thromboembolic complications and shock. The mortality of patients hospitalized with COVID-19 is unacceptably high and new strategies are urgently needed to rapidly identify and treat patients at risk for organ failure. Clinical epidemiologic studies demonstrate that vulnerability to organ failure is greatest after viral clearance from the upper airway, which suggests that dysregulation of the host immune response is a critical mediator of clinical deterioration and death. Autopsy and pre-clinical evidence implicate aberrant complement activation in endothelial injury and organ failure. A potential therapeutic strategy warranting investigation is to inhibit complement, with case reports of successful treatment of COVID-19 with inhibitors of complement. However, this approach requires careful balance between the host protective and potential injurious effects of complement activation, and biomarkers to identify the optimal timing and candidates for therapy are lacking. Here we report the presence of complement activation products on circulating erythrocytes from hospitalized COVID-19 patients using flow cytometry. These findings suggest that novel erythrocyte-based diagnostics provide a method to identify patients with dysregulated complement activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...