Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311661, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597694

ABSTRACT

Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity. The heme-incorporated protein nanowires demonstrate electron transfer over micrometer distances, with conductive atomic force microscopy showing individual nanowires having comparable conductance to other previously characterized heme-based bacterial nanowires. Exposure of multilayer nanowire films to humidity produces an electrical current, presumably through water molecules ionizing carboxyl groups in the filament and creating an unbalanced total charge distribution that is enhanced by the heme. Incorporation of heme and potentially other metal-center porphyrin molecules into protein nanostructures could pave the way for structurally- and electrically-defined protein-based bioelectronic devices.

2.
ACS Appl Bio Mater ; 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35766918

ABSTRACT

The natural ability of many proteins to polymerize into highly structured filaments has been harnessed as scaffolds to align functional molecules in a diverse range of biomaterials. Protein-engineering methodologies also enable the structural and physical properties of filaments to be tailored for specific biomaterial applications through genetic engineering or filaments built from the ground up using advances in the computational prediction of protein folding and assembly. Using these approaches, protein filament-based biomaterials have been engineered to accelerate enzymatic catalysis, provide routes for the biomineralization of inorganic materials, facilitate energy production and transfer, and provide support for mammalian cells for tissue engineering. In this review, we describe how the unique structural and functional diversity in natural and computationally designed protein filaments can be harnessed in biomaterials. In addition, we detail applications of these protein assemblies as material scaffolds with a particular emphasis on applications that exploit unique properties of specific filaments. Through the diversity of protein filaments, the biomaterial engineer's toolbox contains many modular protein filaments that will likely be incorporated as the main structural component of future biomaterials.

3.
ACS Nano ; 14(6): 6559-6569, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32347705

ABSTRACT

The transfer of electrons through protein complexes is central to cellular respiration. Exploiting proteins for charge transfer in a controllable fashion has the potential to revolutionize the integration of biological systems and electronic devices. Here we characterize the structure of an ultrastable protein filament and engineer the filament subunits to create electronically conductive nanowires under aqueous conditions. Cryoelectron microscopy was used to resolve the helical structure of gamma-prefoldin, a filamentous protein from a hyperthermophilic archaeon. Conjugation of tetra-heme c3-type cytochromes along the longitudinal axis of the filament created nanowires capable of long-range electron transfer. Electrochemical transport measurements indicated networks of the nanowires capable of conducting current between electrodes at the redox potential of the cytochromes. Functionalization of these highly engineerable nanowires with other molecules, such as redox enzymes, may be useful for bioelectronic applications.


Subject(s)
Metalloproteins , Nanowires , Cryoelectron Microscopy , Electric Conductivity , Electron Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...