Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 9246, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927272

ABSTRACT

The acidic microenvironment of solid tumors induces the propagation of highly invasive and metastatic phenotypes. However, simulating these conditions in animal models present challenges that confound the effects of pH modulators on tumor progression. To recapitulate the tumor microenvironment and isolate the effect of pH on tumor viability, we developed a bifurcated microfluidic device that supports two different cell environments for direct comparison. RFP-expressing breast cancer cells (MDA-MB-231) were cultured in treatment and control chambers surrounded by fibrin, which received acid-neutralizing CaCO3 nanoparticles (nanoCaCO3) and cell culture media, respectively. Data analysis revealed that nanoCaCO3 buffered the pH within the normal physiological range and inhibited tumor cell proliferation compared to the untreated control (p < 0.05). Co-incubation of cancer cells and fibroblasts, followed by nanoCaCO3 treatment showed that the nanoparticles selectively inhibited the growth of the MDA-MB-231 cells and reduced cellular migration of these cells with no impact on the fibroblasts. Sustainable decrease in the intracellular pH of cancer cells treated with nanoCaCO3 indicates that the extracellular pH induced cellular metabolic reprogramming. These results suggest that the nanoCaCO3 can restrict the aggressiveness of tumor cells without affecting the growth and behavior of the surrounding stromal cells.


Subject(s)
Breast Neoplasms/drug therapy , Calcium Carbonate/pharmacology , Lab-On-A-Chip Devices , Nanoparticles/administration & dosage , Animals , Antacids/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cellular Reprogramming/drug effects , Cellular Reprogramming/physiology , Female , Humans , Nanoparticles/chemistry
2.
Lab Chip ; 20(16): 3036-3050, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32716448

ABSTRACT

Hypoxia, or low oxygen (O2) tension, is a central feature of important disease processes including wound healing and cancer. Subtle temporal and spatial variations (≤1% change) in the concentration of O2 can profoundly impact gene expression and cellular functions. Sodium sulfite reacts rapidly with O2 and can be used to lower the O2 concentrations in PDMS-based tissue culture systems without exposing the cell culture to the chemical reaction. By carefully considering the mass transfer and reaction kinetics of sodium sulfite and O2, we developed a flexible theoretical framework to design an experimental microfluidic system that provides fine spatial and temporal control of O2 tension. The framework packages the dimensions, fluid flow, reaction rates, concentrations, and material properties of the fluidic lines and device into dimensionless groups that facilitate scaling and design. We validated the theoretical results by experimentally measuring O2 tension throughout the experimental system using phosphorescence lifetime imaging. We then tested the system by examining the impact of hypoxia inducible factor-1α (HIF-1α) on the proliferation and migration of MDA-MB-231 breast cancer cells. Using this system, we demonstrate that mild constant hypoxia (≤4%) induces HIF-1α mediated functional changes in the tumor cells. Furthermore, slow (>12 hours), but not rapid (<1 hour), fluctuations in O2 tension impact HIF-1α mediated proliferation and migration. Our results provide a generalized framework for fine temporal and spatial control of O2 and emphasize the need to consider mild spatial and temporal changes in O2 tension as potentially important factors in disease processes such as cancer.


Subject(s)
Microfluidics , Oxygen , Cell Culture Techniques , Cell Hypoxia , Humans , Hypoxia
3.
PLoS One ; 13(12): e0209574, 2018.
Article in English | MEDLINE | ID: mdl-30571786

ABSTRACT

Microfluidic devices have been successfully used to recreate in vitro biological microenvironments, including disease states. However, one constant issue for replicating microenvironments is that atmospheric oxygen concentration (21% O2) does not mimic physiological values (often around 5% O2). We have created a microfluidic device that can control both the spatial and temporal variations in oxygen tensions that are characteristic of in vivo biology. Additionally, since the microcirculation is responsive to hypoxia, we used a 3D sprouting angiogenesis assay to confirm the biological relevance of the microfluidic platform. Our device consists of three parallel connected tissue chambers and an oxygen scavenger channel placed adjacent to these tissue chambers. Experimentally measured oxygen maps were constructed using phosphorescent lifetime imaging microscopy and compared with values from a computational model. The central chamber was loaded with endothelial and fibroblast cells to form a 3D vascular network. Four to six days later, fibroblasts were loaded into the side chambers, and a day later the oxygen scavenger (sodium sulfite) was flowed through the adjacent channel to induce a spatial and temporal oxygen gradient. Our results demonstrate that both constant chronic and intermittent hypoxia can bias vessel growth, with constant chronic hypoxia showing higher degrees of biased angiogenesis. Our simple design provides consistent control of spatial and temporal oxygen gradients in the tissue microenvironment and can be used to investigate important oxygen-dependent biological processes in conditions such as cancer and ischemic heart disease.


Subject(s)
Cell Hypoxia/physiology , Cellular Microenvironment/physiology , Microfluidic Analytical Techniques/instrumentation , Oxygen/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cellular Microenvironment/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Sulfites/pharmacology
4.
Biomacromolecules ; 14(4): 1199-207, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23506440

ABSTRACT

Hydrogel scaffolds are used in biomedicine to study cell differentiation and tissue evolution, where it is critical to control the delivery of chemical cues both spatially and temporally. While large molecules can be physically entrapped in a hydrogel, moderate molecular weight therapeutics must be tethered to the hydrogel network through a labile linkage to allow controlled release. We synthesized and characterized a library of polymerizable ortho-nitrobenzyl (o-NB) macromers with different functionalities at the benzylic position (alcohol, amine, BOC-amine, halide, acrylate, carboxylic acid, activated disulfide, N-hydroxysuccinyl ester, biotin). This library of polymerizable macromers containing o-NB groups should allow direct conjugation of nearly any type of therapeutic agent and its subsequent controlled photorelease from a hydrogel network. As proof-of-concept, we incorporated the N-hydroxysuccinyl ester macromer into hydrogels and then reacted phenylalanine with the NHS ester. Upon exposure to light (λ = 365 nm; 10 mW/cm(2), 10 min), 81.3% of the phenylalanine was released from the gel. Utilizing the photodegradable macromer incorporating an activated disulfide, we conjugated a cell-adhesive peptide (GCGYGRGDSPG), a protein that exhibits enzymatic activity (bovine serum albumin (BSA)), and a growth factor (transforming growth factor-ß1 (TGF-ß1)) into hydrogels, controlled their release with light (λ = 365 nm; 10 mW/cm(2), 0-20 min), and verified the bioactivity of the photoreleased molecules. The photoreleasable peptide allows real-time control over cell adhesion. BSA maintains full enzymatic activity upon sequestration and release from the hydrogel. Photoreleased TGF-ß1 is able to induce chondrogenic differentiation of human mesenchymal stem cells comparable to native TGF-ß1. Through this approach, we have demonstrated that photodegradable tethers can be used to sequester peptides and proteins into hydrogel depots and release them in an externally controlled, predictable manner without compromising biological function.


Subject(s)
Cell Adhesion/drug effects , Drug Carriers/chemical synthesis , Mesenchymal Stem Cells/drug effects , Serum Albumin, Bovine/pharmacology , Transforming Growth Factor beta1/pharmacology , Biocompatible Materials/chemistry , Cell Differentiation , Cell Proliferation/drug effects , Cells, Cultured , Humans , Hydrogels , Light , Mesenchymal Stem Cells/metabolism , Nitrobenzenes/chemistry , Nitrobenzenes/metabolism , Peptides/chemistry , Peptides/metabolism , Phenylalanine/chemistry , Photolysis , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Transforming Growth Factor beta1/chemistry , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...