Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Commun ; 14(1): 4677, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542037

ABSTRACT

KRAS is an important tumor intrinsic factor driving immune suppression in colorectal cancer (CRC). In this study, we demonstrate that SLC25A22 underlies mutant KRAS-induced immune suppression in CRC. In immunocompetent male mice and humanized male mice models, SLC25A22 knockout inhibits KRAS-mutant CRC tumor growth with reduced myeloid derived suppressor cells (MDSC) but increased CD8+ T-cells, implying the reversion of mutant KRAS-driven immunosuppression. Mechanistically, we find that SLC25A22 plays a central role in promoting asparagine, which binds and activates SRC phosphorylation. Asparagine-mediated SRC promotes ERK/ETS2 signaling, which drives CXCL1 transcription. Secreted CXCL1 functions as a chemoattractant for MDSC via CXCR2, leading to an immunosuppressive microenvironment. Targeting SLC25A22 or asparagine impairs KRAS-induced MDSC infiltration in CRC. Finally, we demonstrate that the targeting of SLC25A22 in combination with anti-PD1 therapy synergizes to inhibit MDSC and activate CD8+ T cells to suppress KRAS-mutant CRC growth in vivo. We thus identify a metabolic pathway that drives immunosuppression in KRAS-mutant CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Male , Mice , Animals , Cell Line, Tumor , CD8-Positive T-Lymphocytes/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Asparagine , Immunotherapy , Tumor Microenvironment
2.
Membranes (Basel) ; 13(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36837684

ABSTRACT

PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt and forms micelle-like structures which are several microns in size. In the proposed hybrid method, the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt (1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane, soluble impurities such as the unmodified protein are washed out through the membrane. The PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for purifying PEGylated proteins is both fast and scalable.

3.
Anal Chim Acta ; 1247: 340903, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781255

ABSTRACT

Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, High Pressure Liquid/methods , Solvents/chemistry , Pharmaceutical Preparations
4.
Nat Commun ; 13(1): 3971, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803966

ABSTRACT

Therapeutic targeting of KRAS-mutant colorectal cancer (CRC) is an unmet need. Here, we show that Proprotein Convertase Subtilisin/Kexin type 9 (PSCK9) promotes APC/KRAS-mutant CRC and is a therapeutic target. Using CRC patient cohorts, isogenic cell lines and transgenic mice, we identify that de novo cholesterol biosynthesis is induced in APC/KRAS mutant CRC, accompanied by increased geranylgeranyl diphosphate (GGPP)─a metabolite necessary for KRAS activation. PCSK9 is the top up-regulated cholesterol-related gene. PCSK9 depletion represses APC/KRAS-mutant CRC cell growth in vitro and in vivo, whereas PCSK9 overexpression induces oncogenesis. Mechanistically, PCSK9 reduces cholesterol uptake but induces cholesterol de novo biosynthesis and GGPP accumulation. GGPP is a pivotal metabolite downstream of PCSK9 by activating KRAS/MEK/ERK signaling. PCSK9 inhibitors suppress growth of APC/KRAS-mutant CRC cells, organoids and xenografts, especially in combination with simvastatin. PCSK9 overexpression predicts poor survival of APC/KRAS-mutant CRC patients. Together, cholesterol homeostasis regulator PCSK9 promotes APC/KRAS-mutant CRC via GGPP-KRAS/MEK/ERK axis and is a therapeutic target.


Subject(s)
Colorectal Neoplasms , Proprotein Convertase 9 , Adenomatous Polyposis Coli Protein/genetics , Animals , Cholesterol , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Mice , Mitogen-Activated Protein Kinase Kinases , Proprotein Convertase 9/genetics , Proto-Oncogene Proteins p21(ras)/genetics
5.
Anal Chim Acta ; 1193: 338810, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35058003

ABSTRACT

A thread-based isotachophoresis method coupled with desorption electrospray ionization mass spectrometry (TB-ITP-DESI-MS) was developed and applied for clean-up, preconcentration, and determination of alkaloids in biological fluids. This simple approach enables the focusing and rapid analysis of analytes of interest in complex matrices that are otherwise challenging using direct ambient mass spectrometry. The TB-ITP platform components were rapidly and reproducibly fabricated at low-cost using 3D printing. A single string of nylon 6 thread was used as the electrophoresis substrate and a cotton knot, tied to the nylon thread, was used as the trapping zone of the ITP focused model analytes (coptisine, berberine and palmatine). The trapping efficiency was evaluated upon different commercially available threads with different chemical properties and cotton was selected as the best material due to its highest trapping efficiency and subsequent DESI-MS ionization efficiency. Up to 11.6-fold increase in signal to noise ratio (S/N) was obtained using the proposed method compared to direct DESI-MS detection, due to the reduced matrix interference and focusing. The results demonstrated that the TB-ITP-DESI-MS approach is a viable solution for the analysis of complicated biological fluid samples.


Subject(s)
Alkaloids , Isotachophoresis , Spectrometry, Mass, Electrospray Ionization
6.
J Chromatogr A ; 1656: 462545, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34543882

ABSTRACT

Liquid chromatography (LC) has broad applicability in the pharmaceutical industry, from the early stages of drug discovery to reaction monitoring and process control. However, small footprint, truly portable LC systems have not yet been demonstrated and fully evaluated practically for on-line, in-line or at-line pharmaceutical analysis. Herein, a portable, briefcase-sized capillary LC fitted with a miniature multi-deep UV-LED detector has been developed and interfaced with a portable mass spectrometer for on-site pharmaceutical analysis. With this configuration, the combined small footprint portable LC-UV/MS system was utilized for the determination of small molecule pharmaceuticals and reaction monitoring. The LC-UV/MS system was interfaced directly with a process sample cart and applied to automated pharmaceutical analysis, as well as also being benchmarked against a commercial process UPLC system (Waters PATROL system). The portable system gave low detection limits (∼3 ppb), a wide dynamic range (up to 200 ppm) and was used to confirm the identity of reaction impurities and for studying the kinetics of synthesis. The developed platform showed robust performance for automated process analysis, with less than 5.0% relative standard deviation (RSD) on sample-to-sample reproducibility, and less than 2% carryover between samples. The system has been shown to significantly increase throughput by providing near real-time analysis and to improve understanding of synthetic processes.


Subject(s)
Pharmaceutical Preparations , Chromatography, Liquid , Mass Spectrometry , Reproducibility of Results
7.
Article in English | MEDLINE | ID: mdl-34339956

ABSTRACT

Ylang-ylang (YY) essential oil (EO) is distilled from the fresh-mature flowers of the Annonaceae family tropical tree Cananga odorata [Lam.] Hook. f. & Thomson, and is widely used in perfume and cosmetic industries for its fragrant character. Herein, two different metabolomic profiles obtained using high-performance thin-layer chromatography (HPTLC), applying different stains, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH·) and p-anisaldehyde, were used for discrimination of 52 YY samples across geographical origins and distillation grades. The first profile is developed using the DPPH· stain based on the radical scavenging activity (RSA) of YY EOs. Results of the HPTLC-DPPH· assay confirmed that RSA of YY EOs is in proportion to the length of distillation times. Major components contributing to the RSA of YY EOs were tentatively identified as germacrene D and α-farnesene, eugenol and linalool, by gas chromatography-mass spectrometry (GC-MS) and GC-flame ionisation detector (GC-FID). The second profile was developed using the general-purpose p-anisaldehyde stain based on the general chemical composition of YY EOs. Untargeted metabolomic discrimination of YY EOs from different geographical origins was performed based on the HPTLC-p-anisaldehyde profiles, followed by principal component analysis (PCA). A discrimination and prediction model for identification of YY distillation grade was developed using PCA and partial least squares regression (PLS) based on binned HPTLC-ultraviolet (254 nm) profiles, which was successfully applied to distillation grade determination of blended YY Complete EOs.


Subject(s)
Cananga/chemistry , Chromatography, Thin Layer/methods , Free Radical Scavengers/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Biphenyl Compounds/analysis , Biphenyl Compounds/metabolism , Chromatography, High Pressure Liquid , Distillation , Eugenol/analysis , Eugenol/chemistry , Eugenol/metabolism , Free Radical Scavengers/metabolism , Metabolomics , Multivariate Analysis , Oils, Volatile/metabolism , Picrates/analysis , Picrates/metabolism , Plant Oils/metabolism , Sesquiterpenes/analysis , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
9.
Prog Mol Subcell Biol ; 59: 181-196, 2021.
Article in English | MEDLINE | ID: mdl-34050867

ABSTRACT

The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.


Subject(s)
Endoplasmic Reticulum , Neoplasms , Biology , Calnexin/genetics , Calnexin/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Lectins/genetics , Lectins/metabolism , Neoplasms/genetics , Protein Disulfide-Isomerases/genetics
10.
Heliyon ; 7(4): e06885, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33997410

ABSTRACT

A direct, robust, accurate and highly sensitive method for oxyhalide species in natural waters, including seawater, using suppressed ion chromatography coupled with mass spectrometry (IC-MS) is described. The method utilised a high capacity, high efficiency anion-exchange column (Dionex IonPac AS11-HC, 4 mm, 2 × 250 mm), with the separation achieved using an electrolytically generated potassium hydroxide gradient, delivered at 0.380 mL min-1. Applying the method, detection limits for iodate, bromate, and chlorate in seawater after direct sample injection (20 µL injection volume, samples diluted 10-fold), were 11, 30 and 13 ng L-1 (ppt), respectively. Standard addition calibrations to ozonated seawater samples were linear, in all cases R2 > 0.999 (n = 10), with intra-day repeatability of 3.7, 11.2 and 1.8 % RSD (n = 10) for a low-level standard mixture (0.30 µg L-1 of iodate, 0.15 µg L-1 of bromate, and 1.50 µg L-1 of chlorate). The method was applied to the analysis of seawater samples taken pre- and post-disinfection points within a recirculating aquacultural system. Iodate, bromate and chlorate were detected as the main oxyanionic disinfection by-products, demonstrating the practical utility of the new method as a valuable tool for monitoring changes to seawater composition following disinfection treatments.

11.
BMC Palliat Care ; 20(1): 48, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757502

ABSTRACT

BACKGROUND: Due to the ageing population in Hong Kong, the importance and need of palliative care and end-of-life (EOL) care are coming under the spotlight. The objectives of this study were to evaluate the attitudes of emergency doctors in providing palliative and EOL care in Hong Kong, and to investigate the educational needs of emergency doctors in these areas. METHODS: A questionnaire was used to study the attitudes of ED doctors of six different hospitals in Hong Kong. The questionnaire recorded the attitudes of the doctors towards the role of palliative and EOL care in EDs, the specific obstacles faced, their comfort level and further educational needs in providing such care. The attitudes of emergency doctors of EDs with EOL care services were compared with those of EDs without such services. RESULTS: In total, 145 emergency doctors completed the questionnaire, of which 60 respondents were from EDs with EOL care services. A significant number of participants recognized that the management of the dying process was essential in ED. Providing palliative and EOL care is also accepted as an important competence and responsibility, but the role and priority of palliative and EOL care in ED are uncertain. Lack of time and access to palliative care specialists/ teams were the major barriers. Doctors from EDs with EOL care services are more comfortable in providing such care and discuss it with patients and their relatives. Further educational needs were identified, including the management of physical complaints, communication skills, and EOL care ethics. CONCLUSIONS: The study identified obstacles in promoting palliative and EOL care in the EDs Hong Kong. With the combination of elements of routine ED practice and a basic palliative medicine skill set, it would promote the development of palliative and EOL care in Emergency Medicine in the future.


Subject(s)
Palliative Care , Terminal Care , Attitude of Health Personnel , Cross-Sectional Studies , Hong Kong , Humans , Self Report
12.
J Chromatogr A ; 1633: 461635, 2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33128974

ABSTRACT

Viral clearance is an important performance metric for the downstream process of monoclonal antibodies (mAbs) due to its impact on patient safety. Anion exchange chromatography (AEX) has been well-accepted in the industry as one of the workhorse techniques for removing viruses, and is considered to be able to achieve high log clearance values under most operating conditions. However, it is not uncommon for viral clearance results on AEX to fall below the desired level despite operating under conditions that should achieve high clearance levels according to conventional wisdom of how this mode of chromatography operates. In this study, a design of experiment (DoE) approach was used to develop a more fundamental understanding of viral clearance during AEX chromatography using Minute Virus of Mice (MVM) on POROS HQ resin. Load pH, conductivity and virus concentration were evaluated as design factors for three mAbs with varying physical and chemical properties. The hydrophobicity and surface charge distributions of the molecules were found to be the most significant factors in influencing viral clearance performance, and the viral clearance trends did not seem to fit with conventional wisdom. To explain this seemingly unconventional behavior, we propose a new mechanism that suggests that interactions between the mAb and the virus have a major contribution on retention of the virus on the resin. This furthered understanding may help improve the predictability, performance and robustness of viral clearance during AEX chromatography.


Subject(s)
Antibodies, Monoclonal/metabolism , Chromatography, Ion Exchange/standards , Minute Virus of Mice/metabolism , Viruses/metabolism , Animals , Anions/chemistry , Antibodies, Monoclonal/chemistry , Mice , Viruses/chemistry
13.
Anal Chem ; 92(20): 13688-13693, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32985176

ABSTRACT

A new miniature deep UV absorbance detector has been developed using low-cost and high-performance LEDs, which can be operated in both scanning (230 to 300 nm) and individual wavelength (240, 255, and 275 nm) detection modes. The detector is mostly composed of off-the-shelf components, such as LEDs, trifurcated fiber optic assembly, a capillary Z-type flow cell, and photodiodes. It has been characterized for use with a standard capillary LC system and was benchmarked against a standard variable wavelength capillary LC detector. The detector shows very low levels of stray light (<0.4%), utilization of up to 99.0% of the effective path length of the flow cell, a wide dynamic range (0.5 to 200 µg/mL for sulfamethazine, carbamazepine, and flavone), and low noise levels (at 300 µAU level). The detector was applied within a miniaturized LC system.

14.
J Chromatogr A ; 1631: 461540, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-32980801

ABSTRACT

A new miniaturised capillary flow-through deep-UV absorbance detector has been developed using a microscale surface mounted device- type light-emitting diode (LED) (Crystal IS OPTAN 3535-series), emitting at 235 nm and with a half-height band width of 12 nm, and a high-sensitivity Z-shaped flow-cell. Compared with a previously reported TO-39 ball lens LEDs emitting at 235 nm, the new generation LED produced a 20-fold higher optical output and delivered up to 35 times increase in external quantum efficiency (EQE). The Z-cell was based on a reflective rectangular optical path with cross-sectional dimensions of 100 × 100 µm and a physical optical pathlength of 1.2 mm. Inclusion of UV transparent fused-silica ball lenses, between the SMD and the Z-cell, improved light transmission by a factor of 9 and improved the detector signal-to-noise ratio by a factor of 2.2, at the same input current. The detector was housed within an Al-housing fitted with a cooling fan and demonstrated excellent linearity with stray light down to 0.06%, and an effective pathlength of 1.1 mm (92% of nominal pathlength). The resultant detector was fitted successfully into a briefcase-sized portable capillary HPLC system, and practically demonstrated with the detection of a mixture of 13 test compounds at the sub-mg L-1 level in <5 min using gradient elution.


Subject(s)
Ultraviolet Rays , Chromatography, High Pressure Liquid , Cross-Sectional Studies
15.
Gastroenterology ; 159(6): 2163-2180.e6, 2020 12.
Article in English | MEDLINE | ID: mdl-32814111

ABSTRACT

BACKGROUND & AIMS: Mutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells. METHODS: We created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography-mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas. RESULTS: CRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine-a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)-DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to ß-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear ß-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients. CONCLUSIONS: In CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to ß-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC.


Subject(s)
Colon/pathology , Colorectal Neoplasms/genetics , Intestinal Mucosa/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , DNA Demethylation , Drug Resistance, Neoplasm , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glutamine/metabolism , Hong Kong/epidemiology , Humans , Kaplan-Meier Estimate , Ketoglutaric Acids/metabolism , Male , Mice, Knockout , Mitochondrial Membrane Transport Proteins/genetics , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor Assays
16.
J Chromatogr A ; 1626: 461374, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32797852

ABSTRACT

This work demonstrates the development of a compact, modular, cost-effective separation system configured to address a specific separation problem. The principles of the separation are based on gradient capillary liquid chromatography where the system consists of precision stepper motor-driven portable syringe pumps with interchangeable glass syringes (100 µL to 1000 µL). Excellent flow-rate precision of < 1% RSD was achieved with typical flow-rates ranging from 1 µL/min to 100 µL/min, which was ideal for capillary columns. A variable external loop volume and electrically actuated miniature injection valve was used for sample introduction. Detection was based upon a commercial Z-type UV absorbance flow-cell housed within a custom-built cooling enclosure (40 mm x 40 mm) which also contained a UV-LED light-source and a photodiode. System and chromatographic performance was evaluated using linear gradient elution, with day to day repeatability of <1.5% RSD (n = 6) for peak area, and < 0.4% RSD (n = 6) for retention time, for the separation of a 5 component mixture using a 50 mm X 530 µm ID C18 3 µm particle capillary column. The system can run any commercial or in-house packed columns from 50 mm to 100 mm length with IDs ranging from 200 to 700 µm. The developed portable system was operated using custom-built windows-based chromatography software, complete with data acquisition and system control.


Subject(s)
Chromatography, High Pressure Liquid/methods , Caffeine/analysis , Carbamazepine/analysis , Cost-Benefit Analysis , Limit of Detection , Miniaturization , Point-of-Care Systems , Reproducibility of Results , Spectrophotometry, Ultraviolet , Sulfamethazine/analysis
17.
Anal Chim Acta ; 1101: 199-210, 2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32029112

ABSTRACT

A robust, portable and miniature battery powered gradient capillary liquid chromatograph (total weight ∼2.7 kg, without battery ∼2.0 kg), with integrated microfluidic injection, column heating and high sensitivity low-UV absorbance detection is presented. The portable capillary chromatograph, was applied with a packed reversed-phase capillary column (100 mm × 300 µm I.D., 5 µm ODS), housed within an integrated capillary column heater controlled by a proportional-integral-derivative (PID) chip module. The system delivered retention time and peak area relative standard deviation in isocratic mode of <0.7% (n = 10) and <3.3% (n = 10), respectively, and <0.1% (n = 10) and <2.3% (n = 10) respectively, for gradient elution mode. Detection was based upon a 255 nm light-emitting diode (LED) using one of two commercial capillary flow-cell options, namely a high sensitivity 12 nL Agilent capillary z-cell (HSDC) and a 45 nL Thermo Fisher Scientific UZ-View™ flow cell (UZFC). The HSDC, housed within a 3D printed detector arrangement, gave an effective pathlength of 1.01 mm (84% of nominal pathlength) and stray light of only 0.2%. Limits of detection for four test small molecule pharmaceuticals ranged from 65 to 101 µg L-1 based upon a 316 nL injection volume, with separation efficiencies of between 18,000 and 29,700 N m-1, with sub-4 min run times. The portable capillary LC system was successfully coupled to a small footprint portable mass spectrometer (Microsaic 4500 MiD) to demonstrate compatibility and 'point-of-need' miniaturised LC-MS capability.


Subject(s)
Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Electric Power Supplies , Limit of Detection , Mass Spectrometry , Pharmaceutical Preparations/isolation & purification , Plant Extracts/isolation & purification , Spectrophotometry, Ultraviolet
18.
Anal Chem ; 91(14): 8795-8800, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31185715

ABSTRACT

Ultraviolet (UV)-light-emitting diodes (LEDs) are now widely used in analytical absorbance-based detectors; as compared to conventional UV lamps, they offer lower cost, faster response time, and higher photon conversion efficiency. However, current generation deep-UV-LEDs produce excess heat when operated at normal operating currents, which affects output stability and reduces their overall performance and lifespan. Herein a 3D printed liquid cooling interface has been developed for a deep-UV-LED-based optical detector, for capillary format flow-through detection. The interface consists of a circular channel that is tightly wrapped around the LED to provide active liquid cooling. The design also facilitates easy plug-and-play assembly of the various essential components of the detector: specifically, a 255 nm UV-LED, a capillary Z-cell, and a broadband UV photodiode (PD). The unique liquid cooling interface improved the performance of the detector by reducing the LED temperature up to 22 °C, increasing the spectral output up to 34%, decreasing the required stabilization time by up to 6-fold, and reducing the baseline noise and limits of detection (LODs) by a factor of 2. The detector was successfully used within a capillary HPLC system and could offer a miniaturized, rapidly stabilized, highly sensitive, and low-cost alternative to conventional UV detectors.

19.
Analyst ; 144(11): 3464-3482, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30976764

ABSTRACT

This review covers advances and applications of open tubular capillary liquid chromatography (OT-LC) over the period 2007-2018. Under the right conditions OT-LC columns have the potential to offer superior column efficiency, higher overall peak capacity, and higher column permeability compared to packed capillary and monolithic columns. However, such advantages are highly dependent upon column format and dimensions, and to date in liquid chromatography the advantages of open tubular format columns have been most widely discussed and applied in the field of proteomics. In this review we have focused on the wider variety of separation mechanisms and applications which can be achieved following the modification of the inner wall of the capillary with a thin-layer stationary phase. In particular the latest advances in stationary phase development and formation, together with new column formats and dimensions are reviewed. Detection options for OT-LC are also discussed and recent advances in this area highlighted. Finally, this review summarises existing applications of OT-LC and illustrates the future potential for this technique.

20.
Anal Chim Acta ; 1051: 41-48, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30661618

ABSTRACT

In this study, the separation of inorganic mono and divalent cations using multi-lumen silica capillaries (MLCs) of 126 channels, each with either 4 or 8 µm inner diameter, was investigated using capillary electrophoresis and on-capillary capacitively coupled contactless conductivity detection (CE-C4D). MLCs provided sufficiently high surface area-to-volume ratios to generate significant wall ion-exchange interactions for the divalent cations, which significantly affected resultant selectivity, whereas monovalent cations were predominantly separated by simple electrophoresis. The resultant hybrid selectivity was seen for both 4 and 8 µm channel multi-lumen capillaries, without any preconditioning or capillary wall modification. Remarkably, the electrophoretic mobilities for the divalent cations Mg2+ and Ca2+ were reduced 7.5 times compared to those determined using a single channel open tubular capillary of 50 µm i.d., providing much improved selectivity. Apparent electrophoretic mobilities of divalent cations increased as the concentration of BGE increased, while those of monovalent cations decreased parallel to electroosmotic mobility. These results show the electrostatic interaction between the divalent cations and the silica wall. At least, this specific separation of mono- and divalent cations were clearly observed with a mixture standards solution of less than 200 µmol L-1. Using a MLC with 126 × 8 µm i.d. channels and 49.1 cm in length, together with a 20 mmol L-1 MES/His BGE, containing 2 mmol L-1 18-crown-6, monovalent cations (NH4+, K+ Na+ and Li+) and divalent cations (Ca2+ and Mg2+) could be completely separated within 4 min. For monovalent cations, on-capillary detection using C4D provided calibration curve (0-200 µmol L-1) correlation coefficients in the range R2 = 0.995-0.999, and limits of detection of 2.2-6.6 µmol L-1. Relative standard deviations for migration times were less than 0.6%, and recoveries ranged from the 93.8%-105.4%. The new method was applied to the separation and quantitative determination of monovalent and divalent cations in drinking waters and soil extracts.


Subject(s)
Cations, Divalent/analysis , Cations, Divalent/isolation & purification , Cations, Monovalent/analysis , Cations, Monovalent/isolation & purification , Electrophoresis, Capillary/methods , Drinking Water/chemistry , Soil/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...