Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke Vasc Neurol ; 7(1): 62-70, 2022 02.
Article in English | MEDLINE | ID: mdl-34645687

ABSTRACT

BACKGROUND AND PURPOSE: Signal transducer and activator of transcription 3 (STAT3) may contribute to the proinflammation in the central nervous system diseases by modulating the microglial responses. Thus, this study was intended to investigate the effect of STAT3 on microglia-dependent neuroinflammation and functional outcome after experimental subarachnoid haemorrhage (SAH). METHODS: The SAH model was established by endovascular perforation in the mouse. Real-time PCR (RtPCR) and western blot were used to examine the dynamic STAT3 signalling pathway responses after SAH. To clarify the role of the STAT3 signalling pathway in the microglia-dependent neuroinflammation after SAH, the microglia-specific STAT3 knockout (KO) mice were generated by the Cre-LoxP system. The neurological functions were assessed by Catwalk and Morris water maze tests. Neuronal loss after SAH was determined by immunohistochemistry staining. Microglial polarisation status after STAT3 KO was then examined by RtPCR and immunofluorescence. RESULTS: The STAT3 and Janus kinase-signal transducer 2 activated immediately with the upregulation and phosphorylation after SAH. Downstream factors and related mediators altered dynamically and accordingly. Microglial STAT3 deletion ameliorated the neurological impairment and alleviated the early neuronal loss after SAH. To investigate the underlying mechanism, we examined the microglial reaction after STAT3 KO. STAT3 deletion reversed the increase of microglia after SAH. Loss of STAT3 triggered the early morphological changes of microglia and primed microglia from M1 to M2 polarisation. Functionally, microglial STAT3 deletion suppressed the SAH-induced proinflammation and promoted the anti-inflammation in the early phase. CONCLUSIONS: STAT3 is closely related to the microglial polarisation transition and modulation of microglia-dependent neuroinflammation. Microglial STAT3 deletion improved neurological function and neuronal survival probably through promoting M2 polarisation and anti-inflammatory responses after SAH. STAT3 may serve as a promising therapeutic target to alleviate early brain injury after SAH.


Subject(s)
Microglia , Neuroinflammatory Diseases , STAT3 Transcription Factor , Subarachnoid Hemorrhage , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , STAT3 Transcription Factor/metabolism , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/pathology
2.
Transl Stroke Res ; 11(3): 433-449, 2020 06.
Article in English | MEDLINE | ID: mdl-31628642

ABSTRACT

Neuroinflammation plays a critical role in the pathogenesis of subarachnoid hemorrhage (SAH). Microglia, as the resident immune cells, orchestrate neuroinflammation distinctly in neurological diseases with different polarization statuses. However, microglial polarizations in the neuroinflammatory responses after SAH are not fully understood. In this study, we investigated the dynamics of microglial reaction in an endovascular perforated SAH model. By using the Cx3cr1GFP/GFP Ccr2RFP/RFP transgenic mice, we found that the reactive immune cells were largely from resident microglia pool rather than infiltrating macrophages. Immunostaining and real-time PCR were employed to analyze the temporal microglial polarization and the resulting inflammatory responses. Our results showed that microglia accumulated immediately after SAH with a centrifugal spreading through the Cortex Adjacent to the Perforated Site (CAPS) to the remote motor cortex. Microglia polarized dynamically from M1 to M2 phenotype along with the morphological transformation from ramified to amoeboid shapes. The ramified microglia demonstrated the M1 property, which suggested the function-related microglial polarization occurred prior to morphological transformation after SAH. Bipolar-shaped microglia appeared as the intermediate and transitional status with the capacity of bidirectional polarization. The microglial polarization status is distinct in molecular inflammatory responses; M1-related pro-inflammation was predominant in the early phase and subsequently transited to the M2-related anti-inflammation. The systematic characterization of the dynamics of microglial polarization in this study contributes to the understanding of the origin of neuroinflammatory responses after SAH and provides key foundation for further investigations to develop target treatment.


Subject(s)
Cell Polarity , Cerebral Cortex/immunology , Encephalitis/immunology , Microglia/immunology , Subarachnoid Hemorrhage/immunology , Animals , Encephalitis/complications , Male , Mice, Inbred C57BL , Mice, Transgenic , Subarachnoid Hemorrhage/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...