Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39003531

ABSTRACT

Profile hidden Markov models (pHMMs) are able to achieve high sensitivity in remote homology search, making them popular choices for detecting novel or highly diverged viruses in metagenomic data. However, many existing pHMM databases have different design focuses, making it difficult for users to decide the proper one to use. In this review, we provide a thorough evaluation and comparison for multiple commonly used profile HMM databases for viral sequence discovery in metagenomic data. We characterized the databases by comparing their sizes, their taxonomic coverage, and the properties of their models using quantitative metrics. Subsequently, we assessed their performance in virus identification across multiple application scenarios, utilizing both simulated and real metagenomic data. We aim to offer researchers a thorough and critical assessment of the strengths and limitations of different databases. Furthermore, based on the experimental results obtained from the simulated and real metagenomic data, we provided practical suggestions for users to optimize their use of pHMM databases, thus enhancing the quality and reliability of their findings in the field of viral metagenomics.


Subject(s)
Markov Chains , Metagenomics , Viruses , Metagenomics/methods , Viruses/genetics , Viruses/classification , Databases, Genetic , Humans , Computational Biology/methods , Algorithms
2.
Hypertens Res ; 45(2): 270-282, 2022 02.
Article in English | MEDLINE | ID: mdl-34857899

ABSTRACT

The role of the gut microbiota in various metabolic diseases has been widely studied. This study aims to test the hypothesis that gut microbiota dysbiosis is associated with DOCA-salt-induced hypertension, while captopril, an antihypertensive drug, is able to rebalance the gut microbiota alterations caused by hypertension. Treatment with captopril resulted in an approximate 32 mmHg reduction in systolic blood pressure (162.57 vs. 194.61 mmHg) in DOCA-salt-induced hypertensive rats, although it was significantly higher than that in SHAM rats (136.10 mmHg). Moreover, the nitric oxide (NO) level was significantly increased (20.60 vs. 6.42 µM) while the angiotensin II (Ang II) content (42.40 vs. 59.47 pg/ml) was attenuated nonsignificantly by captopril treatment in comparison to those of DOCA-salt-induced hypertensive rats. The introduction of captopril significantly decreased the levels of tumor necrosis factor-α (TNF-ɑ) and interleukin-6 (IL-6). Hypertrophy and fibrosis in kidneys and hearts were also significantly attenuated by captopril. Furthermore, gut microbiota dysbiosis was observed in DOCA-salt-induced hypertensive rats. The abundances of several phyla and genera, including Proteobacteria, Cyanobacteria, Escherichia-Shigella, Eubacterium nodatum and Ruminococcus, were higher in DOCA-salt-induced hypertensive rats than in SHAM rats, while these changes were reversed by captopril treatment. Of particular interest, the genera Bifidobacterium and Akkermansia, reported as beneficial bacteria in the gut, were abundant in only hypertensive rats treated with captopril. These results provide evidence that captopril has the potential to rebalance the dysbiotic gut microbiota of DOCA-salt-induced hypertensive rats, suggesting that the alteration of the gut flora by captopril may contribute to the hypotensive effect of this drug.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Acetates , Animals , Blood Pressure , Captopril/pharmacology , Desoxycorticosterone , Hypertension/chemically induced , Hypertension/drug therapy , Rats
3.
Membranes (Basel) ; 11(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069901

ABSTRACT

The combined effect of acrylonitrile butadiene styrene (ABS) spherical beads and granular activated carbon (GAC) particles as fluidized media on the performance of anaerobic fluidized bed membrane bioreactor (AFMBR) was investigated. GAC particles and ABS beads were fluidized together in a single AFMBR to investigate membrane fouling and organic removal efficiency as well as energy consumption. The density difference between these two similarly sized media caused the stratified bed layer where ABS beads are fluidized above the GAC along the membrane. Membrane relaxation was effective to reduce the fouling and trans-membrane pressure (TMP) below 0.25 bar could be achieved at 6 h of hydraulic retention time (HRT). More than 90% of soluble chemical oxygen demand (SCOD) was removed after 80 d operation. Biogas consisting of 65% of methane was produced by AFMBR, suggesting that combined use of GAC and ABS beads did not have any adverse effect on methane production during the operational period. Scanning Electron Microscope (SEM) examinations showed the adherence of microbes to both media. However, 16S rRNA results revealed that fewer microbes attached to ABS beads than GAC. There were also compositional differences between the ABS and GAC microbial communities. The abundance of the syntrophs and exoelectrogens population on ABS beads was relatively low compared to that of GAC. Our result implied that syntrophic synergy and possible occurrence of direct interspecies electron transfer (DIET) might be facilitated in AFMBR by GAC, while traditional methanogenic pathways were dominant in ABS beads. The electrical energy required was 0.02 kWh/m3, and it was only about 13% of that produced by AFMBR.

4.
Water Res ; 190: 116721, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33326896

ABSTRACT

Intermittent (every other day) microaerobic [picomolar oxygen by oxidation-reduction potential (ORP) set at +25 mV above anaerobic baseline] digestion of lignocellulosic biomass showed higher digestibility and better stability at a high organic loading rate (OLR) of 5 g volatile solids (VS)/L/d than that under strict anaerobic conditions. However, the microbial mechanisms supporting the delicate balance under microaeration remain underexplored. On the basis of our previous findings that microbial communities in replicate experiments were dominated by strains of the genus Proteiniphilum but contained diverse taxa of methanogenic archaea, here we recovered related genomes and reconstructed the putative metabolic pathways using a genome-centric metagenomic approach. The highly enriched Proteiniphilum strains were identified as efficient cellulolytic facultative bacterium, which directly degraded lignocellulose to carbon dioxide, formate, and acetate via aerobic respiration and anaerobic fermentation, alternatively. Moreover, high oxygen affinity cytochromes, bd-type terminal oxidases, in Proteiniphilum strains were found to be closely associated with such picomolar oxygen conditions, which has long been overlooked in anaerobic digestion. Furthermore, hydrogenotrophic methanogenesis was the prevalent pathway for methane production while Methanosarcina, Methanobrevibacter, and Methanocorpusculum were the dominant methanogens in the replicate experiments. Importantly, the two functional groups, namely cellulolytic facultative Proteiniphilum strains and methanogens, encoded various antioxidant enzymes. Energy-dependent reactive oxygen species (ROS) scavengers (superoxide reductase (SOR) and rubrerythrin (rbr) were ubiquitously present in different methanogenic taxa in response to replicate-specific ORP levels (-470, -450 and -475 mV). Collectively, cytochrome bd oxidase and ROS defenders may play roles in improving the digestibility and stability observed in intermittent microaerobic digestion.


Subject(s)
Cytochromes , Methane , Anaerobiosis , Biomass , Bioreactors , Cytochromes/metabolism , Lignin , Reactive Oxygen Species
5.
Water Res ; 178: 115815, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32380296

ABSTRACT

In the past decade, the characterisation of the microbial community in anaerobic digestion was primarily done by using high-throughput short-read amplicon sequencing. However, the short-read approach has inherent primer bias and low phylogenetic resolution. Our previous study using Illumina MiSeq suggested that the heterogeneity of AD microbiome was operation-driven. To advance our knowledge towards the complexity of the AD microbiome, we performed full-length 16S rRNA gene amplicon sequencing using PacBio Sequel for a more accurate phylogenetic identification. To this end, purified DNA samples from 19 global anaerobic digesters were sequenced. Sixteen methanogenic archaea were identified at the species level. Among them, Methanosarcina horonobensis and Methanosarcina flavescens had significant presence under specific operating conditions. Methanothrix concilii presented in all digesters sequenced. Unexpectedly, over 90% of the Smithella detected were closely related to alkane-degrading Smithella strains D17 and M82, not Smithella propionica. Using LEfSe and network analysis, the interspecies relationship between the fermentative and syntrophic bacteria was addressed. Comparison of the short- and long-read sequencing results were performed and discussed. From sample preparation to data analysis, this work characterised the digester microbiomes in a superior resolution.


Subject(s)
Archaea , Microbiota , Anaerobiosis , Bioreactors , Phylogeny , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...