Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172140, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569956

ABSTRACT

Despite their longstanding use in environmental remediation, constructed wetlands (CWs) are still topical due to their sustainable and nature-based approach. While research and review publications have grown annually by 7.5 % and 37.6 %, respectively, from 2018 to 2022, a quantitative meta-analysis employing advanced statistics and machine learning to assess CWs has not yet been conducted. Further, traditional statistics of mean ± standard deviation could not convey the extent of confidence or uncertainty in results from CW studies. This study employed a 95 % bootstrap-based confidence interval and out-of-bag Random Forest-based driver analysis on data from 55 studies, totaling 163 cases of pilot and full-scale CWs. The study recommends, with 95 % confidence, median surface hydraulic loading rates (HLR) of 0.14 [0.11, 0.17] m/d for vertical flow-CWs (VF) and 0.13 [0.07, 0.22] m/d for horizontal flow-CWs (HF), and hydraulic retention time (HRT) of 125.14 [48.0, 189.6] h for VF, 72.00 [42.00, 86.28] h for HF, as practical for new CW design. Permutation importance results indicate influent COD impacted primarily on COD removal rate at 21.58 %, followed by HLR (16.03 %), HRT (12.12 %), and substrate height (H) (10.90 %). For TN treatment, influent TN and COD were the most significant contributors at 12.89 % and 10.01 %, respectively, while H (9.76 %), HRT (9.72 %), and HLR (5.87 %) had lower impacts. Surprisingly, while HRT and H had a limited effect on COD removal, they substantially influenced TN. This study sheds light on CWs' performance, design, and control factors, guiding their operation and optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...