Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662295

ABSTRACT

In adult white adipose tissue, cold or ß3-adrenoceptor activation promotes the appearance of thermogenic beige adipocytes. Our comprehensive single-cell analysis revealed that these cells arise through the reprogramming of existing adipogenic trajectories, rather than from a single precursor. These trajectories predominantly arise from SM22-expressing vascular mural progenitor cells. Central in this transition is the activation of Adrb3 in mature adipocytes, leading to subsequent upregulation of Adrb1 in primed progenitors. Under thermoneutral conditions, synergistic activation of both Adrb3 and Adrb1 recapitulates the pattern of cold-induced SM22+ cell recruitment. Lipolysis-derived eicosanoids, specifically docosahexaenoic acid (DHA) and arachidonic acid (AA) prime these processes and in vitro, were sufficient to recapitulate progenitor cells priming. Collectively, our findings provide a robust model for cold-induced beige adipogenesis, emphasizing a profound relationship between mature adipocytes and mural cells during cold acclimation, and revealing the metabolic potential of this unique cellular reservoir.

2.
Commun Biol ; 4(1): 517, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941818

ABSTRACT

Erythropoiesis involves complex interrelated molecular signals influencing cell survival, differentiation, and enucleation. Diseases associated with ineffective erythropoiesis, such as ß-thalassemias, exhibit erythroid expansion and defective enucleation. Clear mechanistic determinants of what make erythropoiesis effective are lacking. We previously demonstrated that exogenous transferrin ameliorates ineffective erythropoiesis in ß-thalassemic mice. In the current work, we utilize transferrin treatment to elucidate a molecular signature of ineffective erythropoiesis in ß-thalassemia. We hypothesize that compensatory mechanisms are required in ß-thalassemic erythropoiesis to prevent apoptosis and enhance enucleation. We identify pleckstrin-2-a STAT5-dependent lipid binding protein downstream of erythropoietin-as an important regulatory node. We demonstrate that partial loss of pleckstrin-2 leads to worsening ineffective erythropoiesis and pleckstrin-2 knockout leads to embryonic lethality in ß-thalassemic mice. In addition, the membrane-associated active form of pleckstrin-2 occurs at an earlier stage during ß-thalassemic erythropoiesis. Furthermore, membrane-associated activated pleckstrin-2 decreases cofilin mitochondrial localization in ß-thalassemic erythroblasts and pleckstrin-2 knockdown in vitro induces cofilin-mediated apoptosis in ß-thalassemic erythroblasts. Lastly, pleckstrin-2 enhances enucleation by interacting with and activating RacGTPases in ß-thalassemic erythroblasts. This data elucidates the important compensatory role of pleckstrin-2 in ß-thalassemia and provides support for the development of targeted therapeutics in diseases of ineffective erythropoiesis.


Subject(s)
Apoptosis , Cell Nucleus/pathology , Erythroblasts/pathology , Erythropoiesis , Membrane Proteins/physiology , beta-Thalassemia/pathology , Animals , Cell Nucleus/metabolism , Erythroblasts/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , beta-Thalassemia/etiology , beta-Thalassemia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...