Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 154: 111042, 2022 04.
Article in English | MEDLINE | ID: mdl-35337583

ABSTRACT

Rice (Oryza sativa L.) is considered as the staple food for 50% of the world's population. Humans are exposed to arsenic (As) through rice consumption, which is a global health issue that requires attention. The present review reflects the scenario of rice grown in As endemic regions of Asia that has a significant portion of inorganic As (iAs) compared to other rice grown areas around the world. Post-harvesting, pre-cooking, and cooking procedures in South and South-East Asian countries employ As-contaminated groundwater. Polishing of brown rice and parboiling, washing and cooking with As-safe water can reduce As concentration and nutrient level in cooked rice. However, in rural parts of South-east Asia, rice is usually cooked using As-contaminated groundwater and consumption of this As enriched rice and water may cause a significant health exposure in humans. Bioaccessibility and bioavailability of As can be determined using in-vitro and in-vivo techniques that can be utilized as a tool to assess As exposure in humans. Arsenic in cooked rice may be reduced by using newly developed cooking procedures such as Kateh cooking, steam percolating, and the parboiled and absorbed (PBA) method. For individuals living in rural regions, using rainwater or treated surface water for drinking and cooking is also an alternative. Although this study examined the processes involved in the post-harvesting, pre-cooking, and cooking stages, there are still significant research gaps in this area that must be addressed in near future.


Subject(s)
Arsenic , Oryza , Arsenic/analysis , Biological Availability , Cooking/methods , Edible Grain/chemistry , Food Contamination/analysis , Humans
2.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32159215

ABSTRACT

Tea is a highly cross-pollinated, woody, perennial tree. High heterozygosity combined with a long gestational period makes conventional breeding a cumbersome process. Therefore, marker-assisted breeding is a better alternative approach when compared with conventional breeding. Considering the large genome size of tea (~3 Gb), information about simple sequence repeat (SSR) is scanty. Thus, we have taken advantage of the recently published tea genomes to identify large numbers of SSR markers in the tea. Besides the genomic sequences, we identified SSRs from the other publicly available sequences such as RNA-seq, GSS, ESTs and organelle genomes (chloroplasts and mitochondrial) and also searched published literature to catalog validated set of tea SSR markers. The complete exercise yielded a total of 935 547 SSRs. Out of the total, 82 SSRs were selected for validation among a diverse set of tea genotypes. Six primers (each with four to six alleles, an average of five alleles per locus) out of the total 27 polymorphic primers were used for a diversity analysis in 36 tea genotypes with mean polymorphic information content of 0.61-0.76. Finally, using all the information generated in this study, we have developed a user-friendly database (TeaMiD; http://indianteagenome.in:8080/teamid/) that hosts SSR from all the six resources including three nuclear genomes of tea and transcriptome sequences of 17 Camellia wild species. Database URL: http://indianteagenome.in:8080/teamid/.


Subject(s)
Camellia sinensis/genetics , Databases, Genetic , Genetic Markers/genetics , Genome, Plant/genetics , Genomics/methods , Microsatellite Repeats/genetics , Alleles , Data Mining/methods , Genotype , Internet , Polymorphism, Genetic , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...