Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464247

ABSTRACT

Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their ß2 adrenergic receptors (ß2ARs). Here, we investigate the role of microglial ß2AR signaling in AD pathology in the 5xFAD mouse model of AD. We found that loss of cortical NE projections preceded the degeneration of NE-producing neurons and that microglia in 5xFAD mice, especially those microglia that were associated with plaques, significantly downregulated ß2AR gene expression early in amyloid pathology. Importantly, dampening microglial ß2AR signaling worsened plaque load and the associated neuritic damage, while stimulating microglial ß2AR signaling attenuated amyloid pathology. Our results suggest that microglial ß2AR could be explored as a potential therapeutic target to modify AD pathology.

2.
Dev Neurobiol ; 81(6): 786-804, 2021 09.
Article in English | MEDLINE | ID: mdl-34228891

ABSTRACT

Fetal alcohol spectrum disorder patients suffer from many cognitive disabilities. These include impaired auditory, visual, and tactile sensory information processing, making it more difficult for these patients to learn to navigate social scenarios. Rodent studies have shown that alcohol exposure during the brain growth spurt (BGS) can lead to acute neuronal apoptosis and an immunological response by microglia in the somatosensory cortex. Since microglia have critical physiological functions, including the support of excitatory synapse remodeling via interactions with dendritic spines, we sought to understand whether BGS alcohol exposure has long-term effects on microglial or dendritic spine dynamics. Using in vivo two-photon microscopy in 4-5 week old mice, we evaluated microglial functions such as process motility, the response to tissue injury, and the dynamics of physical interactions between microglial processes and dendritic spines. We also investigated potential differences in the morphology, density, or dynamics of dendritic spines in layer I/II primary sensory cortex of control and BGS alcohol exposed mice. We found that microglial process motility and contact with dendritic spines were not altered after BGS alcohol exposure. While the response of microglial processes toward tissue injury was not significantly altered by prior alcohol exposure, there was a trend suggesting that alcohol early in life may prime microglia to respond more quickly to secondary injury. Spine density, morphology, stability, and remodeling over time were not perturbed after BGS alcohol exposure. We demonstrate that after BGS alcohol exposure, the physiological functions of microglia and excitatory neurons remain intact in early adolescence.


Subject(s)
Dendritic Spines , Microglia , Adolescent , Animals , Cerebral Cortex , Dendritic Spines/physiology , Ethanol/toxicity , Humans , Mice , Microglia/physiology , Neurons/physiology
3.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34250902

ABSTRACT

Microglia are the brain's resident immune cells with a tremendous capacity to autonomously self-renew. Because microglial self-renewal has largely been studied using static tools, its mechanisms and kinetics are not well understood. Using chronic in vivo two-photon imaging in awake mice, we confirm that cortical microglia show limited turnover and migration under basal conditions. Following depletion, however, microglial repopulation is remarkably rapid and is sustained by the dynamic division of remaining microglia, in a manner that is largely independent of signaling through the P2Y12 receptor. Mathematical modeling of microglial division demonstrates that the observed division rates can account for the rapid repopulation observed in vivo. Additionally, newly born microglia resemble mature microglia within days of repopulation, although morphological maturation is different in newly born microglia in P2Y12 knock out mice. Our work suggests that microglia rapidly locally and that newly born microglia do not recapitulate the slow maturation seen in development but instead take on mature roles in the CNS.


Subject(s)
Cell Self Renewal , Microglia/metabolism , Receptors, Purinergic P2Y12/metabolism , Visual Cortex/metabolism , Animals , Brain/immunology , Brain/metabolism , Cell Movement , Kinetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Models, Theoretical , Signal Transduction , Visual Cortex/immunology
4.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668516

ABSTRACT

While microglia have been established as critical mediators of synaptic plasticity, the molecular signals underlying this process are still being uncovered. Increasing evidence suggests that microglia utilize these signals in a temporally and regionally heterogeneous manner. Subsequently, it is necessary to understand the conditions under which different molecular signals are employed by microglia to mediate the physiological process of synaptic remodeling in development and adulthood. While the microglial purinergic receptor P2Y12 is required for ocular dominance plasticity, an adolescent form of experience-dependent plasticity, it remains unknown whether P2Y12 functions in other forms of plasticity at different developmental time points or in different brain regions. Using a combination of ex vivo characterization and behavioral testing, we examined how the loss of P2Y12 affects developmental processes and behavioral performance in adulthood in mice. We found P2Y12 was not required for an early form of plasticity in the developing visual thalamus and did not affect microglial migration into barrels in the developing somatosensory cortex. In adult mice, however, the loss of P2Y12 resulted in alterations in recognition and social memory, as well as anxiety-like behaviors, suggesting that while P2Y12 is not a universal regulator of synaptic plasticity, the loss of P2Y12 is sufficient to cause functional defects.


Subject(s)
Anxiety/metabolism , Behavior, Animal , Brain/metabolism , Neuronal Plasticity , Receptors, Purinergic P2Y12/deficiency , Synapses/metabolism , Animals , Anxiety/genetics , Anxiety/pathology , Brain/pathology , Memory , Mice , Mice, Knockout , Receptors, Purinergic P2Y12/metabolism , Synapses/genetics , Synapses/pathology
5.
J Neurosci Res ; 99(8): 2008-2025, 2021 08.
Article in English | MEDLINE | ID: mdl-33606320

ABSTRACT

Fetal alcohol spectrum disorders (FASD) are the most common cause of nonheritable, preventable mental disability and are characterized by cognitive, behavioral, and physical impairments. FASD occurs in almost 5% of births in the United States, but despite this prevalence there is no known cure, largely because the biological mechanisms that translate alcohol exposure to neuropathology are not well understood. While the effects of early ethanol exposure on neuronal survival and circuitry have received more attention, glia, the cells most closely tied to initiating and propagating inflammatory events, could be an important target for alcohol in the developing brain. Inflammation is known to alter developmental trajectories, but it has recently been shown that even small changes in both astrocytes and microglia in the absence of full-blown inflammatory signaling can alter brain function long-term. Here, we studied the acute response of astrocytes and microglia to a single exposure to ethanol in development across sexes in a mouse model of human third trimester exposure, in order to understand how these cells may transition from their normal developmental path to a different program that leads to FASD neuropathology. We found that although a single ethanol exposure delivered subcutaneously on postnatal day 4 did not cause large changes in microglial morphology or the expression of AldH1L1 and GFAP in the cortex and hippocampus, subtle effects were observed. These findings suggest that even a single, early ethanol exposure can induce mild acute alterations in glia that could contribute to developmental deficits.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Ethanol/pharmacology , Microglia/metabolism , Microglia/pathology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Fetal Alcohol Spectrum Disorders/metabolism , Fetal Alcohol Spectrum Disorders/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mice, Inbred C57BL
6.
Brain Behav Immun ; 67: 257-278, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28918081

ABSTRACT

Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in a brain region where microglia do not acutely assume nor maintain an activated phenotype.


Subject(s)
Ethanol/administration & dosage , Microglia/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Visual Cortex/drug effects , Visual Cortex/growth & development , Animals , Disease Models, Animal , Female , Fetal Alcohol Spectrum Disorders/physiopathology , Male , Mice, Inbred C57BL , Microglia/physiology , Neurons/physiology , Photic Stimulation , Sensory Deprivation
7.
Dev Neurobiol ; 78(6): 627-644, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29285893

ABSTRACT

Microglia are the innate immune cells of the central nervous system and are also important participants in normal development and synaptic plasticity. Here, we demonstrate that the microglia of the mouse cerebellum represent a unique population compared to cortical microglia. Microglia are more sparsely distributed within the cerebellum and have a markedly less ramified morphology compared to their cortical counterparts. Using time-lapse in vivo imaging, we found that these differences in distribution and morphology ultimately lead to decreased parenchymal surveillance by cerebellar microglia. We also observed a novel form of somal motility in cerebellar microglia in vivo, which has not been described in cortical populations. We captured microglial interactions with Purkinje neurons in vivo. Cerebellar microglia interact dynamically with both the dendritic arbors and somas of Purkinje neurons. These findings suggest that cerebellar microglia are physiologically distinct from cortical populations and that these differences may ultimately alter how they could contribute to plasticity and disease processes in the cerebellum. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 627-644, 2018.


Subject(s)
Cerebellum/cytology , Cerebellum/physiology , Microglia/cytology , Microglia/physiology , Neurons/cytology , Neurons/physiology , Animals , Cell Communication , Cell Count , Cell Movement , Cerebellum/injuries , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Visual Cortex/cytology , Visual Cortex/physiology
8.
Front Cell Neurosci ; 9: 369, 2015.
Article in English | MEDLINE | ID: mdl-26441540

ABSTRACT

The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex.

9.
Neurophotonics ; 1(1): 011014, 2014 Jul.
Article in English | MEDLINE | ID: mdl-26157970

ABSTRACT

Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes. Using fixed brain sections, we observed enhanced green fluorescent protein expression in astrocytes and blood vessel walls throughout the brain, although the extent and cell type specificity of expression depended on the brain area and developmental age. Using in vivo two-photon imaging, we visualized astrocytes in cortical layers 1-3 in both thin skull and window preparations. In adult animals, astrocytic cell bodies and fine processes could be followed over many hours. Our results suggest that Id3 mice could be used for in vivo imaging of astrocytes and blood vessels in development and adulthood.

10.
Dev Neurobiol ; 69(10): 674-88, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19551873

ABSTRACT

Chronic in vivo imaging studies of the brain require a labeling method that is fast, long-lasting, efficient, nontoxic, and cell-type specific. Over the last decade, adeno-associated virus (AAV) has been used to stably express fluorescent proteins in neurons in vivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second-strand DNA synthesis, which delays peak transgene expression. The development of double-stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype-specific tropism. dsAAV-GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV-GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV-GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV-labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long-term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Staining and Labeling/methods , Visual Cortex/cytology , Visual Cortex/growth & development , Analysis of Variance , Animals , Astrocytes/physiology , Astrocytes/virology , Cell Survival , Dermoscopy , Fluorescent Antibody Technique , Green Fluorescent Proteins/genetics , In Vitro Techniques , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microinjections , Microscopy, Confocal , Neurons/physiology , Neurons/virology , Patch-Clamp Techniques , Time Factors , Visual Cortex/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...